SEDE OPERATIVA STRADA CAVEDOLE 12/C 41126 PORTILE (MO)

TEL E FAX +39 059 784335 CELL +39 339 8179913

e mail c.borelli@studio-borelli.191.it

P. IVA 02598120364 C.F. BRL CLD 73E 60A 794X

INDAGINI GEOLOGICHE A SUPPORTO DEGLI INTERVENTI PREVISTI LUNGO IL DIVERSIVO FOSSA NUOVA CAVATA

RELAZIONE GEOLOGICA SULLE INDAGINI SVOLTE

Doc. Rif. R1501a_L1501Diversivo Fossa Nuova Cavata_Life RInasce.doc del 14 aprile 2015

COMMITTENTE:

CONSORZIO DI BONIFICA DELL'EMILIA CENTRALE CORSO GARIBALDI, 42 42121 REGGIO EMILIA

IL TECNICO INCARICATO:

Dott.ssa Geol. Claudia Borelli

Indice

ELEI	NC	O ALLEGATI	3
PRE	ME	SSA	4
INQ	UA	DRAMENTO GEOLOGICO	5
1	In	quadramento geologico regionale	5
2	In	quadramento tettonico	8
3	St	ratigrafia	9
4	Ge	eomorfologia	.12
DIVI	ERS	SIVO FOSSA NUOVA CAVATA	14
5	In	quadramento geografico	14
6	De	escrizione degli interventi in progetto	. 14
7	Ca	aratteristiche geologiche e litologiche locali	16
8	In	dagini geologiche da banca dati regionale	18
9	In	dagini geologiche specifiche	. 19
9.	1.	Campagna di indagini geognostiche	19
9.	1.1.	Prove penetrometriche statiche CPT	19
9.	1.2.	Sondaggi a carotaggio continuo	20
9.	1.3.	Prove geotecniche di laboratorio	20
CON	ICI	USIONI	25

ELENCO ALLEGATI

Allegato 1	Inquadramento corografico dei canali oggetto di intervento	Scala 1:75.000
DIVERSIVO FOS Allegato 2	SA NUOVA CAVATA Inquadramento topografico	Scala 1:5.000
Allegato 3	Inquadramento topografico su ortofoto e ubicazione verticali di indagine	Scala 1:5.000
Allegato 4	Referenze da banca dati geologica regionale	
Allegato 5	Certificati delle prove penetrometriche statiche	
Allegato 6	Certificati dei sondaggi a carotaggio continuo	
Allegato 7	Certificati delle prove di laboratorio	
RISPOSTA SISM Allegato 8	ICA LOCALE Indagine sismica con metodo sismico MASW – Relazione tecnica	
Allegato 9	Valutazione della risposta sismica locale	

Studio Geologico e Ambientale Dott.ssa Claudia Borelli Strada Cavedole12/C 41126 Portile (MO) Tel e fax +39 059 784335 Cell. +39 339 8179913 email c.borelli@studio-borelli.191.it

PREMESSA

Su incarico del Consorzio Emilia Centrale (Provv. Del Presidente n.612 del 10/12/2014) si è provveduto alla esecuzione delle indagini geologiche a supporto degli interventi previsti lungo i canali Collettore Alfiere, Collettore Acque Basse Modenesi, Diversivo Fossa Nuova Cavata e Cavata Orientale. La presente relazione descrive le indagini geognostiche e sismiche svolte ed i loro risultati, che sono contestualizzati rispetto al contesto geologico locale.

Lo studio è stato condotto nel rispetto delle N.T.C. di cui al D.M. 14/01/2008 e della Circolare applicativa del 2/02/2009.

Per la caratterizzazione geognostica sono stati eseguiti:

- n. 4 sondaggi a carotaggio continuo, tra il 19/01/2015 ed il 20/01/2015, con profondità comprese tra 8.6 e 15.4 m di profondità a partire dal p.c.. I sondaggi sono stati eseguiti dalla Ditta Sogeo s.r.l. di Lugo (RA) Concessione Ministero Infrastrutture e Trasporti Settore C Decr. N. 005754 del 1/07/2010. Durante i sondaggi sono stati prelevati campioni indisturbati e disturbati sui quali sono state eseguite prove di caratterizzazione e di resistenza.
- n. 9 prove penetrometriche statiche C.P.T., con penetrometro statico Pagani 100 kN in dotazione allo Studio Geologico e Ambientale incaricato. Le prove CPT hanno raggiunto profondità comprese tra 8 e 15 m dal p.c.

Per la definizione della risposta sismica locale è stata condotta una specifica indagine sismica per ciascun sito con metodo MASW attivo: l'indagine è stata finalizzata alla definizione della velocità Vs30 del terreno interessato dall'intervento in progetto.

INQUADRAMENTO GEOLOGICO

1 INQUADRAMENTO GEOLOGICO REGIONALE

Per la descrizione delle caratteristiche geologiche e sismotettoniche delle aree oggetto di studio si è fatto riferimento ad alcune pubblicazioni della Regione Emilia Romagna, in particolare alla Carta Geologica progetto CARG disponibile al sito http://ambiente.regione.emilia-romagna.it/geologia/cartografia/webgis-banchedati/webgis, alle Note Illustrative della Carta Geologica d'Italia alla scala 1:50.000 del Foglio 201 Modena (Gasperi G. Pizziolo M., Firenze 2008), alla Carta sismotettonica della Regione Emilia Romagna in scala 1:250.000 (Boccaletti M. Martelli L., 2004) ed alla pubblicazione Riserve idriche sotterranee della Regione Emilia Romagna (Regione Emilia Romagna, ENI – AGIP, 1998).

Il territorio dell'Emilia-Romagna è costituito dal versante padano dell'Appennino settentrionale e dalla Pianura Padana a sud del Po; il limite regionale infatti coincide per lunghi tratti con lo spartiacque appenninico verso sud e con il corso del Po verso nord.

Pur essendo due ambienti geomorfologici ben distinguibili, l'Appennino e la Pianura Padana sono strettamente correlati. Il fronte della catena appenninica non coincide infatti con il limite morfologico catena-pianura (margine appenninico-padano) ma è individuabile negli archi esterni delle Pieghe Emiliane e Ferraresi (Pieri & Groppi, 1981) sepolte dai sedimenti quaternari padani (fig. 1).

Quindi, il vero fronte appenninico, circa all'altezza del Po, sovrascorre verso nord sulla piattaforma padano-veneta (fig. 2). Si può così schematizzare che l'evoluzione del territorio dell'Emilia-Romagna e della Pianura Padanacoincide con l'evoluzione del settore esterno della catena nord-appenninica.



Figura 1. Principali lineamenti strutturali attivi in Emilia-Romagna

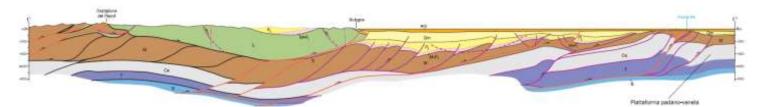


Figura 2. Sezione sismogeologica profonda nel sottosuolo della pianura, trasversale all'Appennino ed alla Pianura Padano sud-nord

L'Appennino settentrionale è una catena a thrusts facente parte del sistema alpino, formatosi in gran parte a spese della placca Adriatica per l'interazione fra le placche Africana ed Euroasiatica.

Si tratta di un edificio formato da una pila di unità tettoniche riferibili a due principali domini: il dominio Ligure, i cui sedimenti si sono deposti originariamente su crosta oceanica

(Liguridi s.l., Auctt.) e il dominio Tosco-Umbro-Marchigiano, rappresentato da successioni del margine continentale dell'Adria la cui età inizia a partire dal Triassico.

Mentre l'Appennino e le strutture profonde della Pianura Padana si sono deposte in un bacino marino, i terreni affioranti nella Pianura Padana sono di origine continentale. Il riempimento del bacino marino ed il passaggio alla sedimentazione continentale non sono avvenuti in maniera continua e progressiva, ma sono il risultato di eventi tettonici e sedimentari parossistici, separati nel tempo da periodi di forte subsidenza bacinale e ridotti movimenti tettonici delle strutture compressive. Questo è testimoniato dalle numerose superfici di discontinuità stratigrafica riconosciute e cartografate.

Dopo l'abbassamento del livello del mare dovuto all'isolamento del Mediterraneo, la ripresa della sedimentazione si svolge per lo più a ridosso del margine settentrionale dell'Appennino in una fascia che dal Piemonte meridionale giunge sino alle Marche. L'Appennino ormai emerso fornisce all'avanfossa abbondante detrito, mentre con il Messiniano Superiore la sedimentazione, per lo più torbiditica di ambiente salmastro si sviluppa in profondi bacini separati da alti strutturali. Con il Pliocene, la risalita del livello del mare porta a una generale trasgressione. La deposizione pelitica interessa vaste zone e torbiditi arenaceopelitiche di piana bacinale e di conoide sottomarina si depongono nelle zone più profonde.

Con il Pleistocene inizia un nuovo ciclo sedimentario (Qm) che porta al definitivo colmamento del bacino padano, prima con sedimenti marini batiali e successivamente, a partire da ovest verso est, con depositi via via meno profondi fino a giungere a depositi di transizione.

L'ultimo episodio di sedimentazione marina del ciclo Qm è rappresentato dalle "sabbie gialle" litorali, cioè da depositi sabbioso-ciottolosi di spiaggia che, grazie anche all'abbondante apporto sedimentario migrano verso il centro della pianura e verso l'Adriatico. Alle sabbie gialle, ritenute di età pleistocenica inferiore-media, segue un nuovo ciclo sedimentario (Qc) e la sedimentazione si sviluppa in condizioni continentali o al massimo costiere, dominata ora dalla dinamica dei fiumi.

2 INQUADRAMENTO TETTONICO

Il bacino padano è profondamente e intensamente coinvolto nella tettonica nord-vergente appenninica che porta allo sviluppo di sistemi di thrust. La strutturazione si è esplicata in gran parte durante il Pliocene controllando fortemente la sedimentazione in ambiente sottomarino. I thrust, a sviluppo planimetrico arcuato con concavità volta verso l'Appennino, delineano strutture positive antiformi, separate dalle successive analoghe strutture da aree sprofondate, sinformi, sulle quali sovrascorrono parzialmente. Il fronte della catena risulta quindi molto più a nord del limite orografico della catena, sepolto dai sedimenti quaternari padano-adriatici. E' formato da sistemi di pieghe e thrust strutturati in una serie di archi posti quasi al centro della pianura (Arco del Monferrato, Arco delle pieghe emiliane, Dorsale ferrarese, fig. 1).

Risultano coinvolti nella tettonica compressiva i sedimenti del Pliocene inferiore e del Pliocene medio-Superiore; al contrario i depositi del Pleistocene documentano il forte rallentamento della tettonica compressiva precedente. Nel Quaternario, infatti, con l'attenuarsi dei movimenti tettonici nord-vergenti si ha il prevalere, nella fascia pedeappenninica, di una subsidenza generalizzata; la sedimentazione si sviluppa su tutta la Pianura Padana in amplissime ondulazioni colmando residue depressioni del sistema bacinale precedente.

Lungo il bordo appenninico-padano i sedimenti quaternari e pliocenici sottostanti appaiono piegati in corrispondenza di una flessura con sensibile immersione verso la pianura. I terreni marini e costieri del Pleistocene affiorano, infatti, in un'ampia fascia prossima alla pianura a quote comprese tra i 200 e i 300 metri, mentre nella pianura gli stessi terreni si rinvengono a parecchie decine di metri al di sotto del piano campagna. Questa struttura costituisce il Lineamento Frontale Appenninico, cerniera tra la catena in sollevamento e l'avanfossa, tutt'ora in pieno sviluppo.

Lungo il margine appenninico modenese inoltre una piega anticlinalica coinvolge i sedimenti quaternari continentali a valle di tale lineamento (Anticlinale di Castelvetro) a testimonianza del perdurare almeno fino al Pleistocene medio di una tettonica compressiva. Una struttura simile, che coinvolge i sedimenti alluvionali, è ipotizzata anche nel sottosuolo della pianura a circa 100 metri di profondità tra Magreta e Sassuolo e si raccorda con l'analoga

struttura affiorante a sud di Reggio Emilia in corrispondenza dell'allineamento Albinea– Montecchio.

Le sequenze sismiche che si sono verificate nel maggio – giugno 2012 sono state causate dalla presenza di zone sismgenetiche attive ed identificate nello schema tettonico sopra riportato, riferibili alla parte della catena appenninica sepolta al di sotto della Pianura Padana denominate Pieghe Ferraresi.

3 STRATIGRAFIA

I terreni continentali affioranti nella porzione di Pianura Padana in esame appartengono alla successione neogenico-quaternaria del margine appenninico-padano e sono rappresentati da depositi fluviali di piana alluvionale.

Come già accennato nell'inquadramento geologico regionale i sedimenti continentali costituiscono la parte sommitale del riempimento quaternario della avanfossa padana. Essi costituiscono un ciclo sedimentario (Qc) che si sovrappone con un limite inconforme, affiorante estesamente nelle aree marginali del bacino, sul precedente ciclo Quaternario marino (Qm). Tale limite è stato riconosciuto e cartografato da Regione Emilia–Romagna & ENI–AGIP (1998) in tutto il sottosuolo padano emiliano – romagnolo in base ai profili sismici e a dati di sondaggi; la sua età, definita sulla base di correlazioni sismiche con le aree adriatiche, è stata fissata a circa 650 ka BP. Lo spessore dei sedimenti continentali varia nell'area dai circa 100 metri delle aree al margine SO ai 500 m circa delle aree poste a NO, come desumibile dalla fig. 3 che descrive la loro quota di base in m s.l.m. (il piano campagna varia da circa 200 lungo il margine a 20 m a NE).

Il diverso spessore appare legato alla diversa subsidenza delle strutture profonde: il settore nord della pianura modenese e reggiana è posto in corrispondenza di uno dei massimi spessori dei sedimenti marini plio-pleistocenici, mentre il margine sud corrisponde a strutture positive con spessori assai ridotti.

I dati relativi al substrato dei depositi alluvionali, noti attraverso le ricerche di idrocarburi (AGIP Mineraria, 1959; Pieri & Groppi, 1981; Mattavelli *et alii*, 1983; Dondi, 1985; Cassano *et alii*, 1986; Dondi & D'Andrea, 1986) consentono di tratteggiare in modo dettagliato la stratigrafia e le strutture profonde padane, direttamente correlabili con le unità affioranti nel margine appenninico.

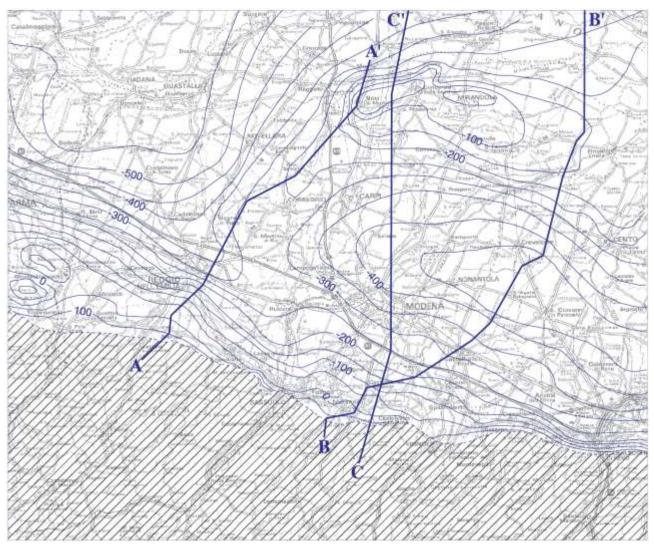


Figura 3. Profondità (in m s.l.m.) del limite basale dei sedimenti quaternari continentali (da Regione Emilia-Romagna & ENI-AGIP, 1998, con modifiche). Equidistanza m 50.

In Regione Emilia–Romagna & ENI-AGIP (1998) è stata proposta la istituzione del Supersintema emiliano–romagnolo, comprendente l'intero spessore dei sedimenti continentali, a sua volta suddiviso in due Sintemi (Sintema Emiliano-Romagnolo Inferiore e Sintema Emiliano Romagnolo Superiore) separati da una discontinuità rilevabile nelle aree marginali della pianura legata a una fase tettonica di importanza regionale (fig. 2).

Il sottosuolo dell'alta e media pianura è caratterizzato da alternanze ripetute di intervalli ghiaiosi e sabbiosi con intervalli limoso argillosi. Amorosi & Farina (1996) hanno riconosciuto nella pianura bolognese cicli di spessore e gerarchia diversi legati a fattori glacio-eustatici, ciclicità confermata anche da Regione Emilia–Romagna & ENI–AGIP (1998). E' possibile

individuare, secondo gli Autori citati, sequenze deposizionali elementari, sviluppate alla scala dei 40–100 ka e di decine di metri di spessore, correlabili per gran parte della pianura emiliano-romagnola. Le sequenze deposizionali di ordine maggiore (i due Sintemi Emiliano–Romagnolo Inferiore e Superiore), come si è accennato, sarebbero separate al margine del bacino da una superficie di discontinuità legata a una fase di sollevamento delle strutture appenniniche.

Tale ciclicità nella sedimentazione è caratteristica soprattutto dell'alta pianura, grosso modo coincidente con i quadranti meridionali del foglio 201; nelle aree poste a sud del Foglio, prossime al margine appenninico, prevalgono le ghiaie in tutti gli intervalli e sono presenti fenomeni di erosione parziale delle unità, mentre nelle aree di media pianura, più distali, scompaiono completamente le ghiaie e le sabbie si riducono notevolmente. Di conseguenza, dei cinque cicli in cui si scompone il Sintema Emiliano-Romagnolo Superiore, nella pianura sono definiti solo i tre superiori, mentre i due inferiori sono identificati in modo informale con un numero progressivo.

Per quanto riguarda la porzione di territorio che ricade nei Fogli 182 e 183, bassa pianura modenese e reggiana, sono assenti le ghiaie ed i sedimenti affioranti appartengono alla categoria delle sabbie, limi e argille. In quest'area la sovrapposizione delle alluvioni appenniniche su quelle del Po è confermata dalle diverse caratteristiche degli orizzonti sabbiosi, relativamente più superficiali, presenti nel sottosuolo. Infatti, laddove presenti nei primi 5 - 8 m da piano campagna, si osservano sabbie medio fini nocciola, immature, che si sovrappongono a sabbie medie quarzose di colore grigio verde. Le prime presentano macroscopicamente una facies attribuibile ai depositi appenninici mentre le seconde ai sedimenti alpini.

La zona è caratterizzata anche da alluvioni argillose a lenti limose della bassa Pianura. Sono presenti inoltre depositi di canale e argine prossimale derivanti da depositi alluvionali del X secolo del Torrente Crostolo e di altri Torrenti minori, che oggi scorrono in un alveo più spostato, a volte anche per cause antropiche.

4 GEOMORFOLOGIA

La gran parte dei sedimenti che affiorano sulla superficie della pianura emilianoromagnola sono recenti (età olocenica, meno di 10.000 anni), molti dei quali si sono depositati
negli ultimi duemila anni (dopo la caduta dell'Impero Romano). Essi derivano dalla complessa
relazione fra il fiume Po, a nord, i fiumi appenninici, a sud e il Mare Adriatico, a est. Per questo
motivo la nostra pianura contiene una grande varietà di depositi comprendenti: le conoidi e le
piane alluvionali dei fiumi appenninici, la piana a meandri del Po, la piana costiera, il delta e le
fronti deltizie, ecc.

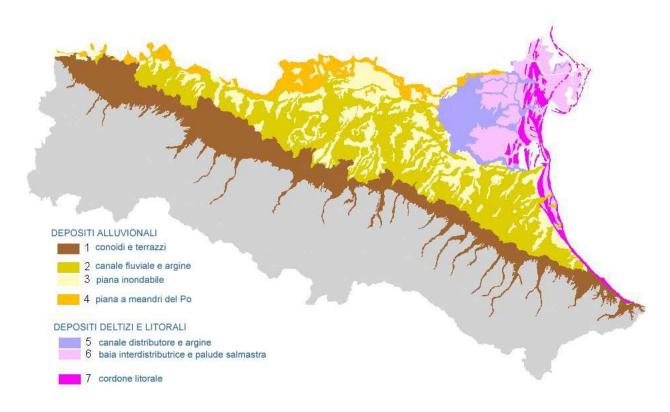


Figura 4. Carta geologica di pianura – sintesi (fonte Regione Emilia Romagna)

Ai diversi sedimenti deposti, corrispondono ambienti deposizionali differenti, che sono descritti nella Carta Geologica di pianura dell'Emilia-Romagna, di cui si riporta un estratto nella Fig. 5.

Le aree in studio ricadono in aree di piana alluvionale, caratterizzate dalla presenza di litologia fini (dai limi sabbiosi e sabbie fini alle argille).

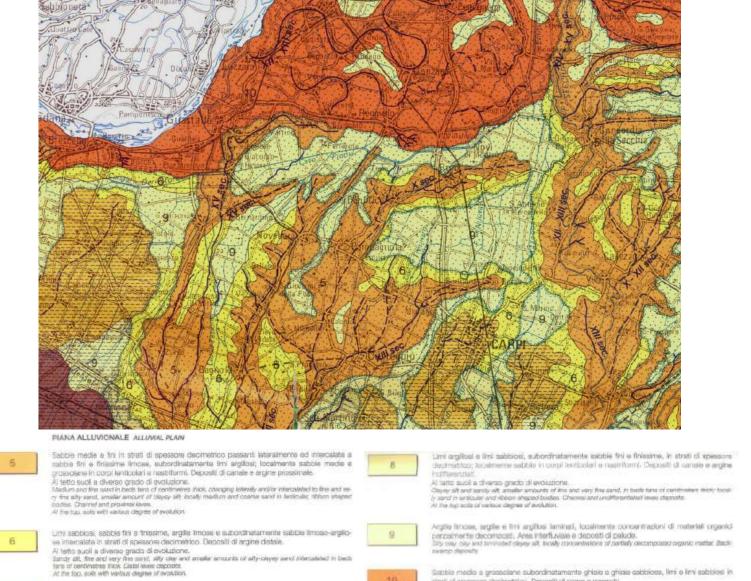


Figura 5. Estratto dalla Carta geologica di pianura dell'Emilia-Romagna in scala 1:250.000 (riduzione 64%)

Di seguito come introduzione per ciascuna area indagata saranno descritte brevemente le unità affioranti, facendo riferimento alla cartografia geologica progetto CARG ed eventualmente alle sezioni stratigrafiche se disponibili. Si farà inoltre riferimento alle prove geognostiche disponibili dalla banca dati regionale, che sono riportate in allegato.

Sabbis mude e fini, limi e ergile limose intercalati in strati di spessore decimatrico: local-mente asbbis media è grassolane in corpi lanticolor o nostritorri. Depositi di canala e argi-

ne indifferenziati.

Sastrio media a grassolane subordinatamento ghisio a ghisio astriosa, limi e limi astriosi in

At helito sunti a diverso grado di evolutione.

Ideaturi and creame accet, to a lesses estest greed and sently grove, emailer amounts of sit and sently sit in out test of certificates the finite. Adventise bet deposits for the ray, note of sentles degree of wedstern.

strati di spessore decinetrico. Depoetii di piene a meandir.

DIVERSIVO FOSSA NUOVA CAVATA

5 INQUADRAMENTO GEOGRAFICO

Il sito in esame si trova nel Comune di Carpi (MO) ed è inserito all'interno dei riferimenti cartografici della Regione Emilia Romagna riportati di seguito in tabella.

Foglio CTR a scala 1:50.000	183 Novi di Modena
Tavola CTR a scala 1:25.000	183 SE Novi di Modena
Sezione CTR a scala 1:10.000	183150 Budrione
Elemento CTR a scala 1:5.000	183152 Fossoli

La zona in esame si trova immediatamente a Nord dell'abitato di Carpi, in area pianeggiante posta ad una quota media di 23 m s.l.m..

6 DESCRIZIONE DEGLI INTERVENTI IN PROGETTO

Il Diversivo Fossa Nuova Cavata ha origine dalla confluenza tra Fossa Nuova e Cavata Occidentale, drena un bacino prevalentemente agricolo, con anche una porzione urbana e industriale. La lunghezza totale del Canale è di 5.539 m, mentre il tratto interessato dagli interventi è di 907 m. La larghezza del fondo è di 3 m, con scarpate a pendenza 1/1 e altezza arginale minima di 2,5 m. Non risulta mai esondato.

L'intervento in progetto prevede l'ampliamento della sezione in terra in sinistra idraulica, verso il Canale della Gusmea, canale irriguo che sarà molto probabilmente intubato in questo tratto.

Figura 7. Tratto verso est

7 CARATTERISTICHE GEOLOGICHE E LITOLOGICHE LOCALI

Ambienti deposiz. e litologie (10K)

Argilla - Piana alluvionale

Limo - Piana alluvionale

Limo Sabbioso - Piana alluvionale

Coperture quaternarie (10K)

AES8 - Subsintema di Ravenna

AES8a - Unità di Modena

Figura 8. Sezioni e sondaggi ricavati dalla Banca dati Regione Emilia Romagna (scala originale 1:20.000, riduzione 73%).

Nell'area affiorano terreni appartenenti al Subsintema di Ravenna (AES8) ed all'Unità di Modena (AES8a), depositi di piana alluvionale a tessitura fine, prevalentemente limosi, che diventano prevalentemente argillosi passando da AES8 ad AES8a.

La stratigrafia del sottosuolo è rappresentata nella figura seguente, che riporta un estratto della sezione, dove si può notare che nella zona sono presenti i sistemi acquiferi A, B, C, che si spingono fino alla profondità di oltre 500 m. I sistemi acquiferi A e B (marrone e verde) sono in zona scarsamente rappresentati, mentre è presente in spessori considerevoli il sistema acquifero C1 (rosa). Gli acquiferi hanno litologia sabbiosa e si presentano saturi. Alla base del

sistema acquifero C si riconosce poi l'acquifero salmastro, costituito da acque fossili non utilizzabili a fini acquedottistici.

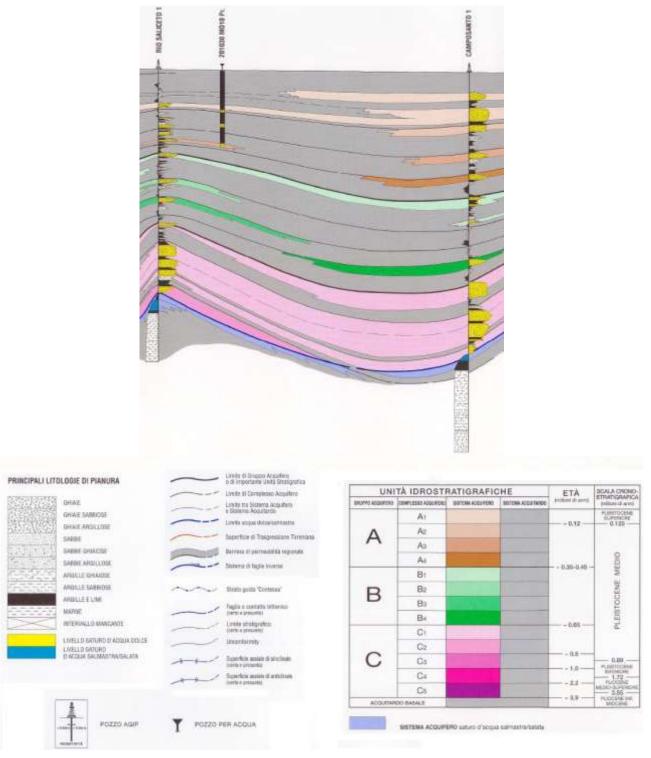


Figura 9. Estratto delle Sezione 32 riguardante la zona in oggetto (banca dati Regione Emilia Romagna).

8 INDAGINI GEOLOGICHE DA BANCA DATI REGIONALE

Per definire le caratteristiche geologiche locali e per indirizzare le indagini geognostiche, si è fatto preliminarmente riferimento alle indagini ed ai dati disponibili dalla banca dati regionale del progetto CARG.

I dati sono disponibili e scaricabili al sito http://ambiente.regione.emilia-romagna.it/geologia/cartografia/webgis-banchedati.

Per la zona in esame sono disponibili sezioni geologica specifiche (la 32 già riportata in Fig. 7) ed alcune prove penetrometriche CPTU, che sono riportate in Allegato 4. Le prove e le sezioni si arrestano su Foglio 201, ma sono comunque un riferimento per la geologia della zona.

Come si può notare dalle due sezioni i depositi grossolani (sabbiosi) delle conoidi alluvionali pedeappenniniche si arrestano più a monte dell'area in esame e perdono continuità. La successione stratigrafica è prevalentemente fine, con la presenza di uno strato sabbioso tra 21 e 25 m di profondità.

9 INDAGINI GEOLOGICHE SPECIFICHE

Per la definizione dei caratteri fisico meccanici che contraddistinguono il sottosuolo della zona in esame è stata condotta una specifica indagine geognostica durante la quale sono state eseguite una prova penetrometrica statica e un sondaggio a carotaggio continuo.

L'ubicazione delle verticali di indagine è riportata in Allegato 3, su ortofoto.

9.1. Campagna di indagini geognostiche

Per la definizione dei caratteri fisico meccanici che contraddistinguono il sottosuolo della zona in esame è stata condotta una specifica indagine geognostica durante la quale sono state eseguite una prova penetrometrica statica e un sondaggio a carotaggio continuo. È stata inoltre eseguita una campagna di indagine sismica con metodo MASW attivo (Allegato 8).

L'ubicazione delle verticali di indagine è riportata in Allegato 3 su ortofoto.

9.1.1. Prove penetrometriche statiche CPT

L'indagine geognostica, finalizzata alla definizione delle caratteristiche geolitologiche e geotecniche dei terreni presenti nell'area, è stata condotta attraverso l'esecuzione di 1 prove penetrometrica statica, che è stata spinta sino alla profondità di 15 m dall'attuale piano campagna.

La prova è stata eseguita utilizzando un penetrometro statico Pagani 100 kN con le seguenti caratteristiche:

Diametro Punta conica meccanica	35,7
Angolo di apertura punta	60
Area punta	10
Superficie manicotto	150
Passo letture (cm)	20
Costante di trasformazione Ct	10

La verticale d'indagine ha attraversato una successione prevalentemente fine, argille e argille sabbiose, separate da uno strato sabbioso presente tra 7,4 e 10,6 m dal p.c. .

Lo strato sabbioso ospita una falda in pressione, con livello dinamico a 1,6 m.

I risultati della CPT, i parametri geotecnici nominali ed il grafico della prova sono riportati in Allegato 5.

9.1.2. Sondaggi a carotaggio continuo

In data 20/01/2015 è stato effettuato un sondaggio a carotaggio continuo con perforatrice Ellettari EK200/STR dalla Ditta Sogeo S.r.l. di Lugo (RA), con Concessione Ministero infrastrutture e Trasporti Settore C Decr. Num. 005754 del 05/07/2010.

Il certificato con la stratigrafia del sondaggi e le foto delle carote estratte sono riportati in Allegato 6.

Il sondaggio ha raggiunto la profondità di 15 m, confermando la presenza di una successione argillosa, con uno strato sabbioso da 6,05 a 10.4 m.

Sono stati prelevati complessivamente 5 campioni, di cui 3 indisturbati (C.I.) in corrispondenza degli strati coesivi e due disturbati (C.D.) in corrispondenza degli strati incoerenti.

I campioni CI1-CI2-CI3-CD1 sono poi stati consegnati al laboratorio geotecnico per le relative prove.

9.1.3. Prove geotecniche di laboratorio

Sui campioni prelevati durante i sondaggi sono state eseguite prove di classificazione e di determinazione delle proprietà indice, oltre a prove di taglio diretto: sui campioni indisturbati sono state eseguite prove triassiali, mentre sui campioni ricostruiti sono state condotte prove di taglio diretto.

In alcuni casi, sui campioni incoerenti sono state eseguite delle prove di permeabilità.

Di seguito si riporta la tabella riassuntiva delle caratteristiche e dei parametri determinati, mentre in Allegato 7 sono restituiti i certificati di laboratorio relativi alle singole prove.

Il Laboratorio che ha eseguito le prove è Sinergea Srl di Granarolo dell'Emilia (BO), autorizzato dal Ministero delle Infrastrutture con Decr. di Conc. N.53083 del 01/03/05 ai sensi dell'art. 59 del DPR 380/01.

Sondaggio	4	Campione	CI1			Profondità (m)	2.20÷2.80
Grandezze i	ndice						
Umidità naturale W (%)	Peso specifico naturale γ (Mg/m³)	Peso specifico secco	Peso specifico immerso (Mg/m³)	Peso specifico Dei grani G _s (Mg/m³)	Porosità n (%)	Indice dei vuoti e	Grado di saturazione S (%)
25.03	1.969	1.574	0.969	2.725	42.14	0.728	93.50
Limiti di Att	erberg		Granulometria	Resistenza			
Limite Liquido W _L (%)	Limite Plastico W _P (%)	Indice di Plasticità (W _L -W _P) (%)	Classificazione granulometrica	Coesione efficace (cond.drenate) c' (kN/m²)	Angolo di attrito Efficace (cond.drenate)	Coesione totale (cond. non drenate) c _u (kN/m²)	Angolo di attrito Totale (cond. non drenate) ϕ_u (° sess.)
44	22	22	Argilla limosa/Argilla con Limo	20	24	40	15

Tabella 1 Diversivo Fossa Nuova Cavata, sondaggio 4 Campione Indisturbato 1

Sondaggio	4	Campione	Cl2			Profondità (m)	4 . 10÷4 . 70	
Grandezze indice								
Umidità naturale W (%)	Peso specifico naturale γ (Mg/m³)	Peso specifico secco ½a (Mg/m³)	Peso specifico immerso (Mg/m³)	Peso specifico Dei grani G _s (Mg/m³)	Porosità n (%)	Indice dei vuoti e	Grado di saturazione S (%)	
28.96	1.893	1.468	0.893	2.733	46.22	0.859	91.98	
Limiti di Att	erberg		Granulometria	Resistenza	·			
Limite Liquido W _L (%)	Limite Plastico W _P (%)	Indice di Plasticità (W _L -W _P) (%)	Classificazione granulometrica	Coesione efficace (cond.drenate) c' (kN/m²)	Angolo di attrito Efficace (cond.drenate)	Coesione totale (cond. non drenate) c _u (kN/m²)	Angolo di attrito Totale (cond. non drenate) ϕ_u (° sess.)	
35	20	15	Limo sabbioso argilloso	15	31			

Tabella 2 Diversivo Fossa Nuova Cavata, sondaggio 4 Campione Indisturbato 2

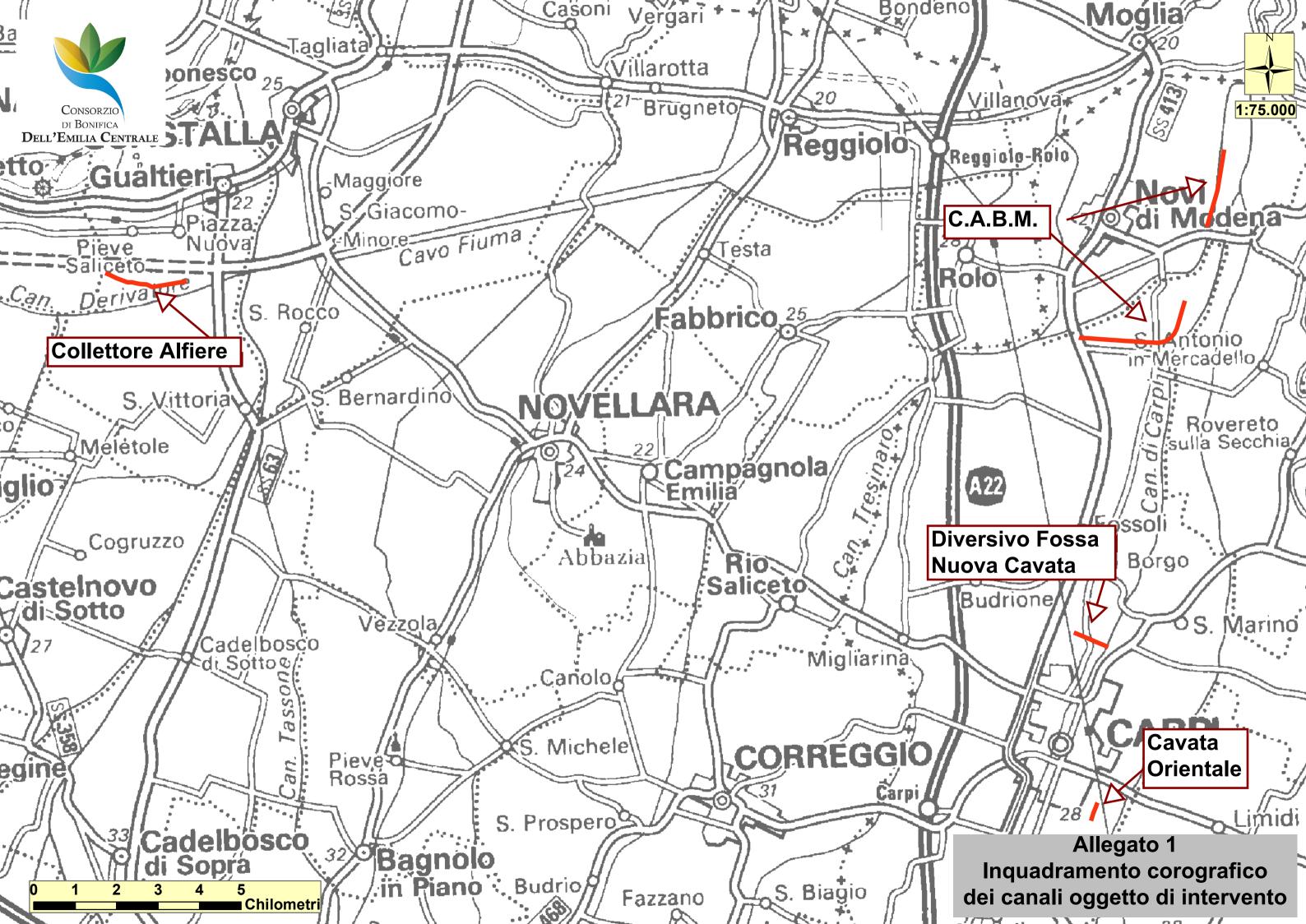
Sondaggio	4	Campione	Cl3			Profondità (m)	11.60÷12.20		
Grandezze indice									
Umidità naturale W (%)	Peso specifico naturale γ (Mg/m³)	Peso specifico secco y _a (Mg/m³)	Peso specifico immerso (Mg/m³)	Peso specifico Dei grani G _s (Mg/m³)	Porosità n (%)	Indice dei vuoti e	Grado di saturazione S (%)		
30.24	1.907	1.465	0.907	2.737	46.4	0.866	94.42		
Limiti di Att	erberg		Granulometria	Resistenza					
Limite Liquido W _L (%)	Limite Plastico W _P (%)	Indice di Plasticità (W _L -W _P) (%)	Classificazione granulometrica	Coesione efficace (cond.drenate) c' (kN/m²)	Angolo di attrit Efficace (cond.drenate)	(cond. non	Angolo di attrito Totale (cond. non drenate) ϕ_u (° sess.)		
59	25	34	Argilla limosa/Argilla con Limo	11	24	18	16		

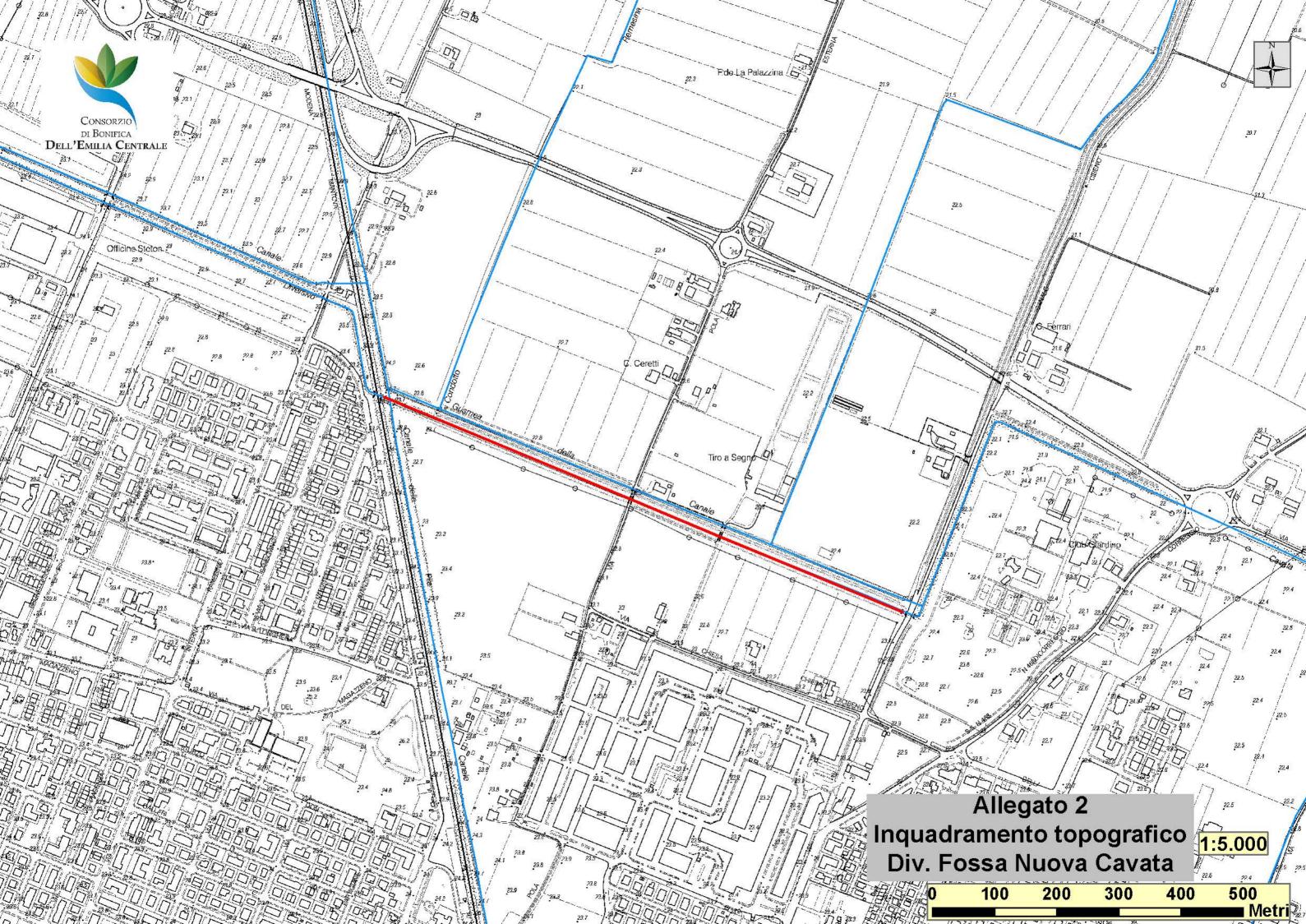
Tabella 3 Diversivo Fossa Nuova Cavata, sondaggio 4 Campione Indisturbato 3

Sondaggio	4	Campione	CD1		Profondità	à (m) 5.30÷5.60	0			
Grandezze indice										
Umidità naturale W (%)	Peso specifico naturale γ (Mg/m³)	Peso specifico secco γ_d (Mg/m³)	Peso specifico immerso (Mg/m³)	Peso specifico Dei grani G _s (Mg/m³)	Porosità n (%)	Indice dei vuoti e	Grado di saturazione S (%)			
30.27	1.942	1.491	0.942	2.740	45.51	0.835	99.18			
Granulometria			Resistenza			Permeabilità				
Classificazione granulometrica			Coesione efficace (cond.drenate) c' (kN/m²)	Angolo di attrito Efficace (cond.drenate) ¢' (° sess.)		Coefficiente di permeabilità K ₁₀ (a 10°C) (m/s)				
Limo con Sabbia argillosa			9	31		2.69E-09				

Tabella 4 Diversivo Fossa Nuova Cavata, sondaggio 4 Campione Disturbato 1

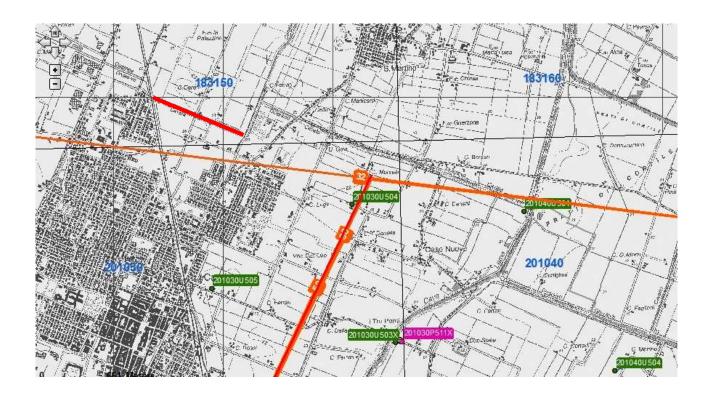
CONCLUSIONI

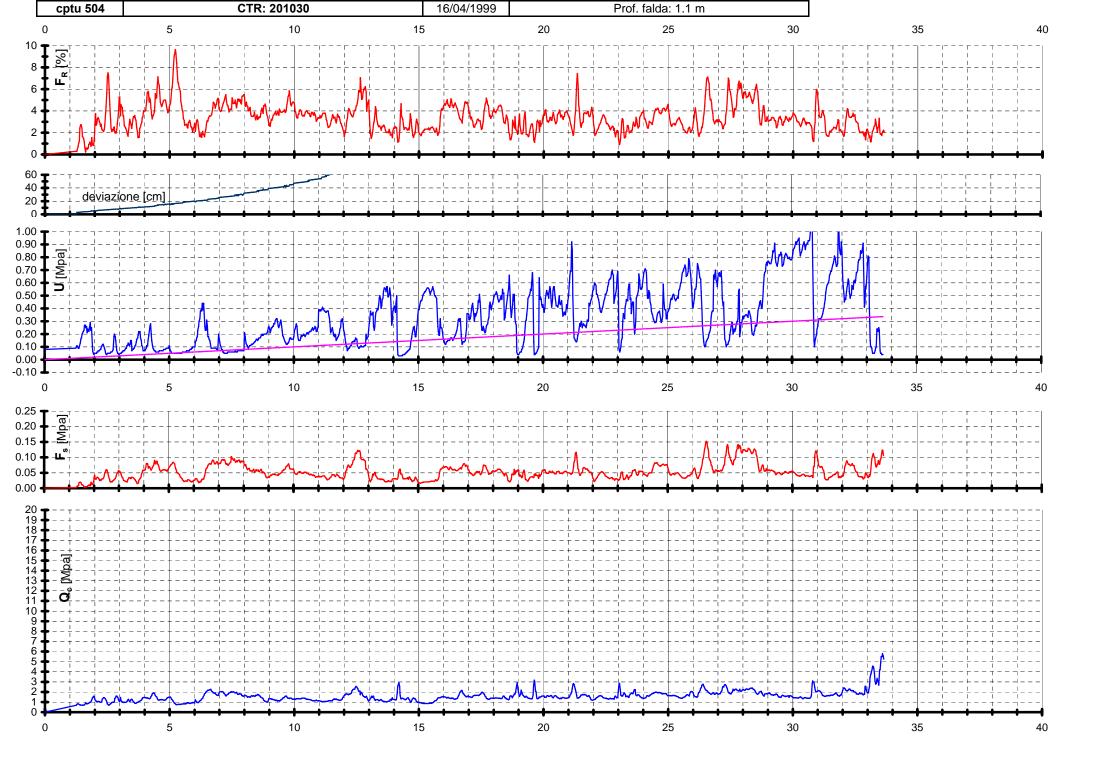

La presente relazione tratta delle caratteristiche geologiche, geomorfologiche e sismiche di alcune aree della bassa pianura reggiana e modenese, percorse da canali e collettori gestiti dal Consorzio di bonifica Emilia Centrale.

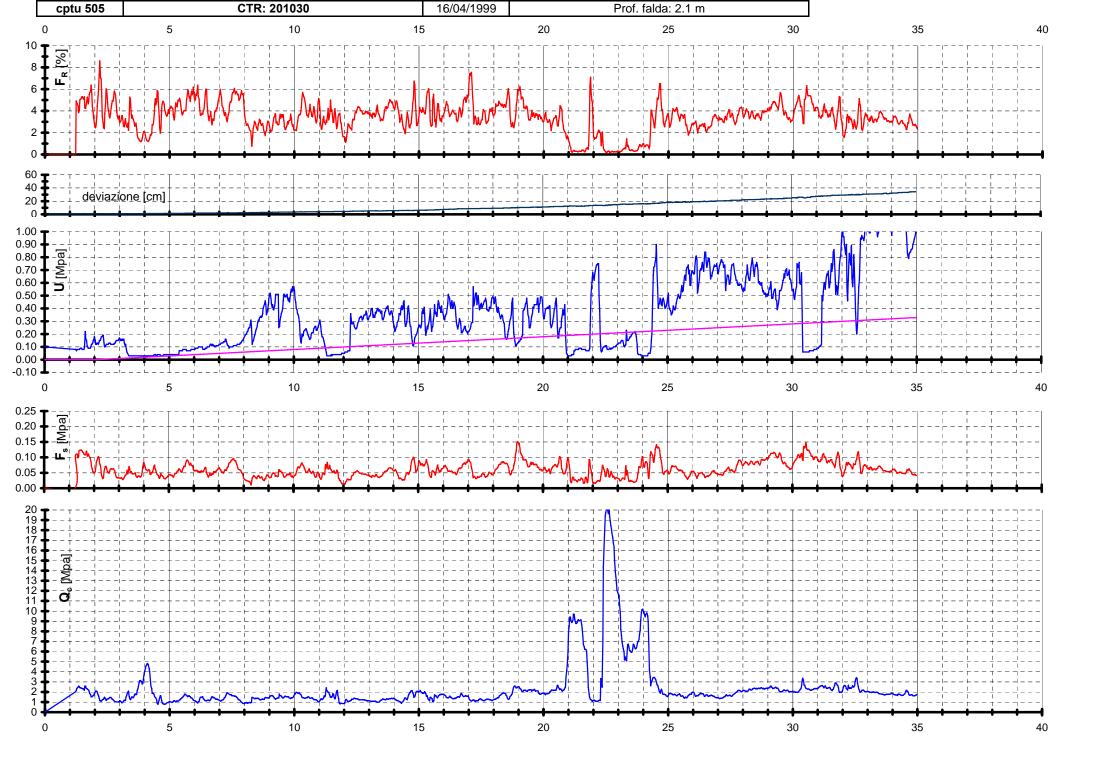

La relazione ha per oggetto e descrive le indagini geologiche, geognostiche, sismiche e geotecniche sui terreni oggetto degli interventi di riqualificazione sui canali previsti dal progetto LIFE Rinasce LIFE13 ENV/IT/000169.

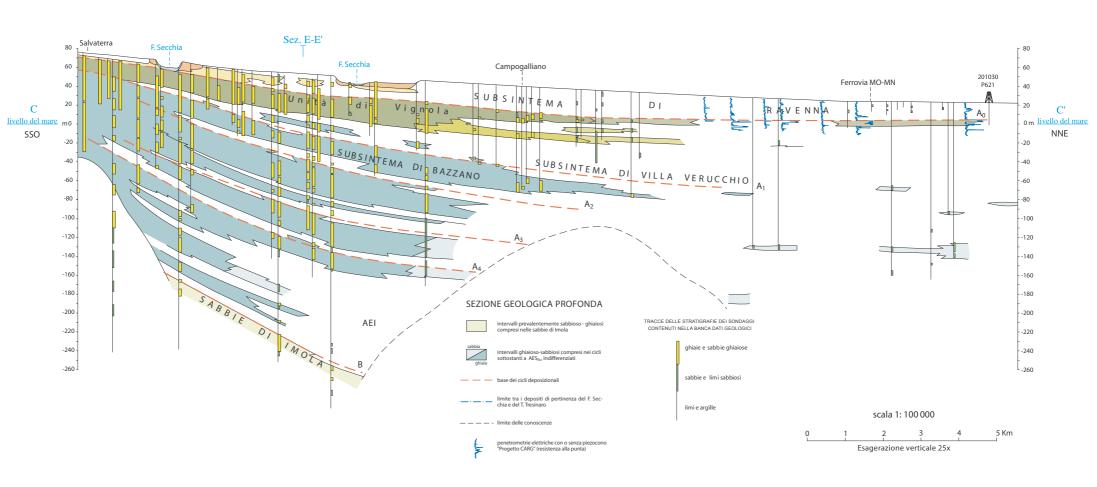
Con la presente sono forniti i parametri nominali che potranno essere utilizzati nel progetto degli interventi sui canali, oltre alle caratteristiche sismiche desunte da specifiche indagini mediante metodo MASW attivo.

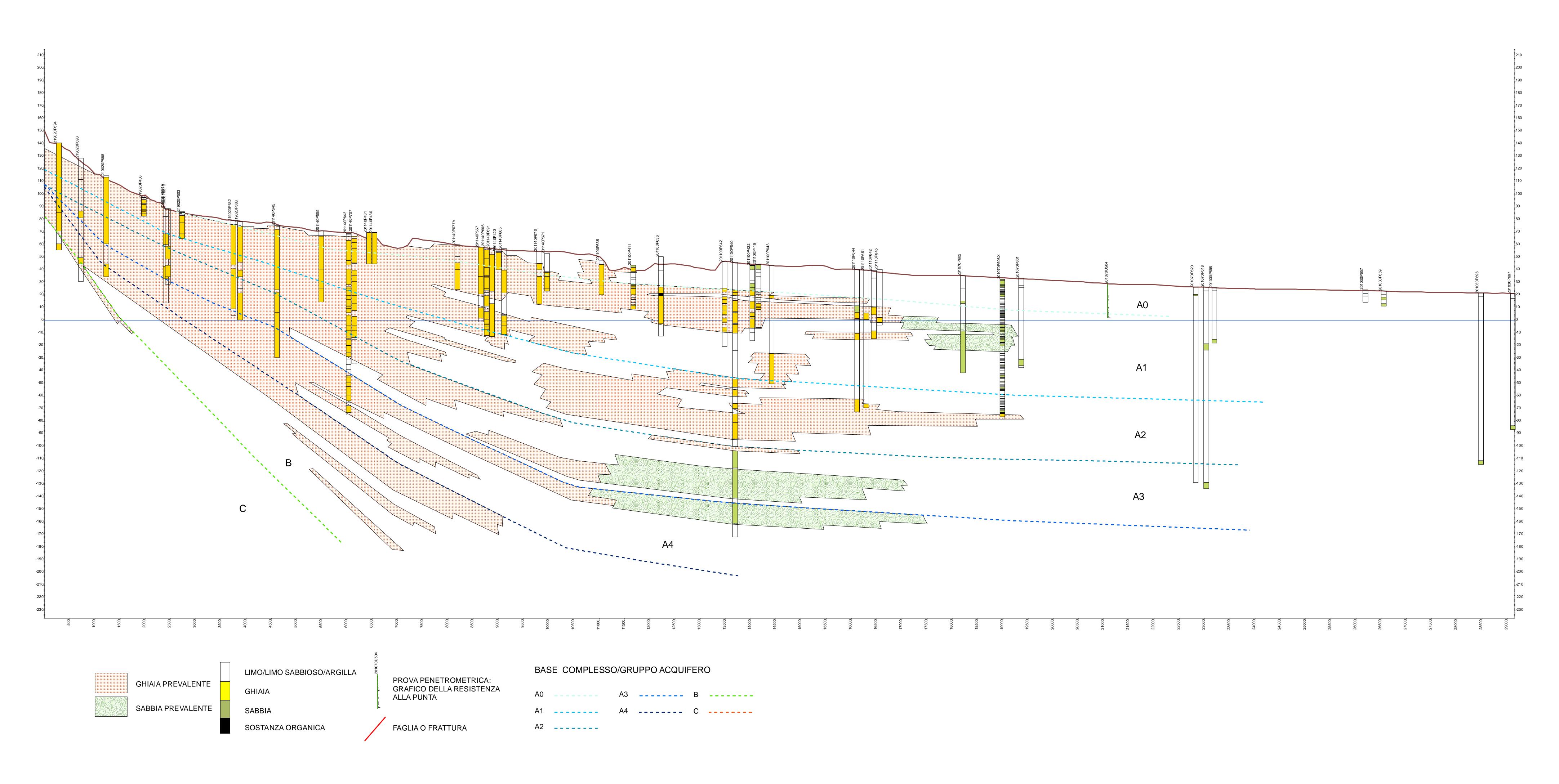
Portile di Modena, 14 Aprile 2015






Studio Geologico e Ambientale Dott.ssa Claudia Borelli Strada Cavedole12/C 41126 Portile (MO) Tel e fax +39 059 784335 Cell. +39 339 8179913 email c.borelli@studio-borelli.191.it


ALLEGATO 4 REFERENZE DA BANCA DATI GEOLOGICA REGIONALE



Ubicazione delle verticali di indagine e delle sezioni geologiche. In rosso il Diversivo Fossa Nuova Cavata

Studio Geologico e Ambientale Dott.ssa Claudia Borelli Strada Cavedole12/C 41126 Portile (MO) Tel e fax +39 059 784335 Cell. +39 339 8179913 email c.borelli@studio-borelli.191.it

ALLEGATO 5 CERTIFICATI DELLE PROVE PENETROMETRICHE STATICHE

Studio Geologico e Ambientale Dott.ssa Claudia Borelli Strada Cavedole12/C 41126 Portile (MO) Tel e fax +39 059 784335 Cell. +39 339 8179913 email c.borelli@studio-borelli.191.it

DIVERSIVO FOSSA NUOVA CAVATA

PROVA PENETROMETRICA STATICA

Committente: Consorzio di Bonifica Emilia Centrale
Cantiere: Argini Consorzio
Località: Carpi-Novi-Gualtieri

Caratteristiche Strumentali PAGANI 100 kN

Rif. Norme	ASTM D3441-86
Diametro Punta conica meccanica	35,7
Angolo di apertura punta	60
Area punta	10
Superficie manicotto	150
Passo letture (cm)	20
Costante di trasformazione Ct	10

PROVA ...DIVERSIVO FOSSA CAVATA CPT1

Committente: Consorzio di Bonifica Emilia Centrale

Strumento utilizzato: PAGANI 100 kN Prova eseguita in data: 14/01/2015 Profondità prova: 15,00 mt Località: Carpi-Novi-Gualtieri

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm²)	(Kg/cm ²)	Begemann	(Schmertmann)
0,20	0,00	0,0	0,1	0,7	0,2	483,3
0,40	8,00	18,0	8,1	0,6	13,6	7,4
0,60	9,00	18,0	9,1	0,9	9,8	10,2
0,80	12,00	26,0	12,1	0,9	13,0	7,7
1,00	9,00	23,0	9,1	0,6	15,2	6,6
1,20	6,00	15,0	6,3	0,5	11,8	8,5
1,40	8,00	16,0	8,3	0,5	17,7	5,6
1,60	7,00	14,0	7,3	0,6	12,1	8,2
1,80	6,00	15,0	6,3	0,3	23,5	4,3
2,00	5,00	9,0	5,3	0,3	19,8	5,1
2,20	5,00	9,0	5,4	0,3	16,3	6,2
2,40	7,00	12,0	7,4	0,3	22,3	4,5
2,60	6,00	11,0	6,4	0,4	16,0	6,2
2,80	6,00	12,0	6,4	0,6 0,5	10,7	9,4
3,00 3,20	11,00 15,00	20,0 23,0	11,4 15,6	0,5	21,4 21,2	4,7 4,7
3,40	14,00	25,0	14,6	0,7	19,9	5,0
3,60	10,00	21,0	10,6	0,7	15,8	6,3
3,80	14,00	24,0	14,6	0,8	18,2	5,5
4,00	12,00	24,0	12,6	0,7	18,8	5,3
4,20	14,00	24,0	14,7	0,6	24,5	4,1
4,40	16,00	25,0	16,7	0,5	31,3	3,2
4,60	24,00	32,0	24,7	0,9	26,5	3,8
4,80	21,00	35,0	21,7	2,3	9,6	10,5
5,00	20,00	54,0	20,7	1,2	17,2	5,8
5,20	23,00	41,0	23,8	1,4	17,0	5,9
5,40	21,00	42,0	21,8	0,5	41,0	2,4
5,60	17,00	25,0	17,8	1,1	15,7	6,4
5,80	24,00	41,0	24,8	0,5	53,2	1,9
6,00	30,00	37,0	30,8	0,4	77,1	1,3
6,20	27,00	33,0	28,0	20,5	1,4	73,2
6,40	26,00	33,0	27,0	0,5	50,6	2,0
6,60	25,00	33,0	26,0	0,7	35,4	2,8
6,80	20,00	31,0	21,0	1,0	21,0	4,8
7,00	12,00	27,0	13,0	0,3	38,9	2,6
7,20	10,00	15,0	11,1	0,5	23,8	4,2
7,40	4,00	11,0	5,1	0,4	12,8	7,8
7,60 7,80	23,00 26,00	29,0 30,0	24,1 27,1	0,3 0,3	90,3 101,5	1,1
8,00	26,00	30,0	27,1	0,5	58,0	1,0 1,7
	33,00	40,0		·	85,6	1,7
8,20 8,40	35,00	41,0	36,2	0,4	135,7	1,2 0,7
8,60	29,00	33,0	30,2	0,9	32,4	3,1
8,80	27,00	41,0	28,2	1,0	28,2	3,5
9,00	69,00	84,0		0,9	75,3	1,3
9,20	46,00	60,0	47,4	0,7	64,6	1,5
9,40	46,00	57,0	47,4	1,0	47,4	2,1
9,60	55,00	70,0	56,4	1,1	49,8	2,0
9,80	40,00	57,0	41,4	0,4	103,5	1,0
10,00	57,00	63,0	58,4	1,1	54,7	1,8
10,20	52,00	68,0	53,5	0,8	66,9	1,5
10,40	47,00	59,0	48,5	-0,9	-52,0	-1,9
10,60	45,00	31,0	46,5	1,4	33,2	3,0
10,80	14,00	35,0	15,5	0,7	21,2	4,7
11,00	15,00	26,0	16,5	0,8	20,6	4,8
11,20	15,00	27,0	16,7	0,9	17,9	5,6
11,40	13,00	27,0	14,7	0,7	20,0	5,0
11,60	13,00	24,0		0,9	16,9	5,9
11,80	12,00	25,0	13,7	0,7	20,5	4,9

12,00	8,00	18,0	9,7	0,6	16,1	6,2
12,20	9,00	18,0			20,3	4,9
12,40		17,0			18,0	
12,60	9,00	18,0	10,8	0,5	23,1	4,3
12,80	13,00	20,0	14,8	0,6	24,7	4,1
13,00	17,00	26,0	18,8	1,0	18,8	5,3
13,20	18,00	33,0	19,9	0,2	99,7	1,0
13,40	30,00	33,0			28,2	3,5
13,60	17,00	34,0				
13,80	18,00	32,0	19,9	1,0	19,9	5,0
14,00	18,00	33,0	19,9	0,9	23,0	
14,20	22,00	35,0	24,1	0,9	27,8	
14,40	23,00	36,0	25,1	1,3	19,8	5,1
14,60	22,00	41,0	24,1	1,2	20,1	5,0
14,80	25,00	43,0	27,1	1,3	20,3	4,9
15,00	25,00	45,0	27,1	1,3	20,8	4,8

Prof. Strato	qc	fs	Gamma	Comp. Geotecnico	Descrizione
(m)	Media	Media	Medio		
	(Kg/cm²)	(Kg/cm²)	(t/m^3)		
0,20	0,1	0,7	1,6	Coesivo	Argille organiche e
					terreni misti
2,80	7,5	0,5	1,8	Coesivo	Argille organiche e
					terreni misti
7,40	18,6	1,6	1,9	Coesivo	Argilla inorganica
					molto compatta
10,60	42,3	0,6	1,9	Incoerente	Sabbie
12,60	13,4	0,7	1,9	Coesivo	Argilla inorganica
					compatta
15,00	22,6	1,0	2,0	Incoerente-Coesivo	Argille sabbiose e
					limose

STIMA PARAMETRI GEOTECNICI

Nr: Numero progressivo strato Prof: Profondità strato (m)

C: Coesivo. I: Incoerente. CI: Coesivo-Incoerente Tipo:

Coesione non drenata (Kg/cm²) Cu:

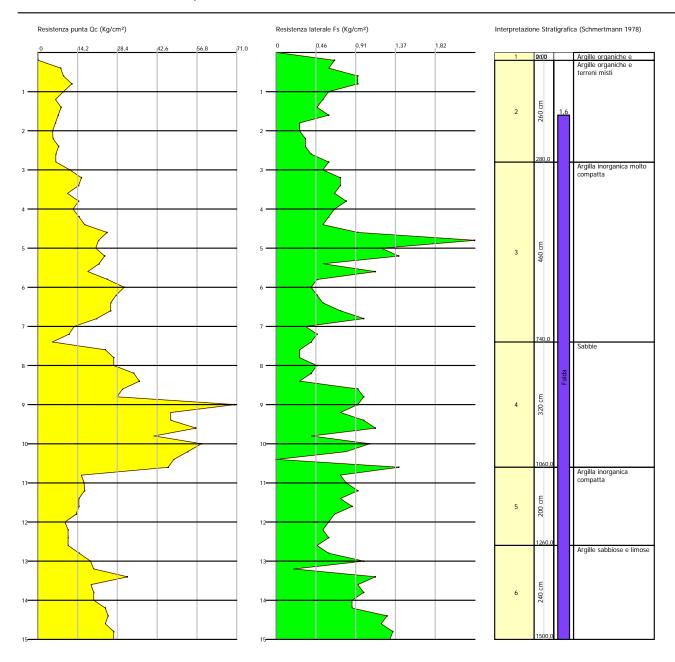
Modulo di defomazione non drenato (Kg/cm²) Modulo Edometrico (Kg/cm²) Modulo di deformazione a taglio (Kg/cm²) Eu:

Mo:

G:

OCR: Grado di sovraconsolidazione Peso unità di volume (t/m³) Puv: PuvS: Peso unità di volume saturo (t/m³)

Dr: Densità relativa (%)


Angolo di resistenza al taglio (°) Modulo di Young (Kg/cm²) Fi: Ey: Velocità onde di taglio (m/s) Vs:

Nr.	Prof.	Tipo	Cu	Eu	Mo	G	OCR	Puv	PuvS	Dr	Fi	Ey	Vs
1	0,20	C	0,0	3,2	0,7	6,9	>9	1,1	1,1				0,00
2	2,80	C	0,4	271,3	36,9	95,9	>9	1,8	1,9				0,00
3	7,40	C	0,9	675,5	44,9	167,0	>9	2,0	2,0				0,00
4	10,60	I			126,9	276,0	< 0.5	1,9	2,2	42,4	36,0	84,6	0,00
5	12,60	C	0,7	458,6	48,1	136,7	4,2	1,9	2,0				0,00
6	15,00	CI	1,1	795,7	45,2	188,2	< 0.5	2,0	2,1	19,0	27,2	45,2	0,00

Probe CPT - Cone Penetration DIVERSIVO FOSSA CAVATA CPT1 Strumento utilizzato PAGANI 100 kN

Committente: Consorzio di Bonifica Emilia Centrale

Cantiere: Argini Consorzio
Località: Carpi-Novi-Gualtieri

Data: 14/01/2015

Studio Geologico e Ambientale Dott.ssa Claudia Borelli Strada Cavedole12/C 41126 Portile (MO) Tel e fax +39 059 784335 Cell. +39 339 8179913 email c.borelli@studio-borelli.191.it

ALLEGATO 6 CERTIFICATI DEI SONDAGGI A CAROTAGGIO CONTINUO

Studio Geologico e Ambientale Dott.ssa Claudia Borelli Strada Cavedole12/C 41126 Portile (MO) Tel e fax +39 059 784335 Cell. +39 339 8179913 email c.borelli@studio-borelli.191.it

DIVERSIVO FOSSA NUOVA CAVATA

Via san Potito 43 - 48022 LUGO (RA)
Tel. 054522042 - Fax 054534443 - E-mail: sogeo@sogeo-srl.com
Concessione Ministero Infrastrutture e Trasporti - Settore C
Decr. n. 005754 del 01/07/2010

X CERTIFIC	ATO N° : C15-00	5-4 PRO	VA N°:	S.4					
DARBORT			AZIONE DDO	VA: (gradi decimali)					
RAPPORT	ON:	Latitu		44,801239°					
DATA DI EMISSI	ONE: 21/01/2	045		10,893199°					
DATA DI ENIISSI	Z 170 172	Congi	tudine: E	10,000100					
Riferimento Preventivo n°: 244-14 Commessa n°: 14-139									
Verbale di acce	ttazione n°:	VA15-005	del:	20/01/2015					
Richiedente:	Dott.ssa Borelli Claudi	a							
Committente:	Sudio Geologico Dott. Strada Cavidole, 12/C								
Cantiere:	Novi (MO)								
Località:	Novi (MO)								
-	tificato di prova si cor a per oggetto le segue		1	pagine, esclusa la					
X	Scheda stratigrafica Installazione piezometro C Installazione Piezometro N Installazione Inclinometro Installazione assestimetro Installazione tubo per pros Prova di permeabilità LEFF	lorton pezione geofisica		Prova scissometrica a fondo foro Prova SCPT Prova CPT Prova CPTE Prova CPTU - Prova dissipazione Prova di carico su piastra Prova di densità in situ					
Attrezzatura utilizzata: Ellettari EK200/STR Matricola n.: 0103									
Allegati: docu	mentazione fotografica								
gOG.	// L	l - On-seine	ntatoro:	Il Direttore del Laboratorio:					
Timbro blu Sistema Ge. UNI EI 9001; QMS/11/TA	sull'originale stione qualità VISO 2008	Lo Sperime	піаюте.	Indigini Geognostiche Dott. Federico Porcari					

Normativa di Riferimento: A.G.I 1977

FILE: MOD_CPR Rev-5.xls

MOD_CPR rev. 5 del 06/2013

Scala 1:100	P.P. I [daN/cm²]	Vane Test [daN/cm²]	Profondita'	Stratigrafia	Descrizione	Campioni	Campioni Rim.	S.P.T. [n. colpi] P.A.	Falda	Pz.Norton	Inclinometro	Tubo Down Hole
1 2 3 4 5 6	2.8 3.0 2.2 1.6 2.2 1.5 2.3 1.8 2.2	1.40 - 1.40 - 1.00 - 0.80 - 1.20 - 0.80 - 1.20 - 0.80 - 1.20 - 1.	- 2.20 - 2.80 - 3.15 - 3.45 - 4.10 - 4.70 - 5.70 - 6.05		Limo argilloso di colore marrone chiaro Argilla limosa di colore grigio - marrone chiaro con striature nere e giallastre, con alcuni calcinelli Campione indisturbato Argilla limosa di colore grigio - marrone chiaro con striature nere e giallastre, con alcuni calcinelli. Da -2.90 a -3.10 m colore grigio scuro - marrone scuro Limo argilloso di colore grigio - giallastro, con abbondanti calcinelli Limo sabbioso di colore grigio - giallastro Campione indisturbato Limo sabbioso di colore grigio - giallastro Argilla limosa di colore grigio - giallastro	- 2.20 - C.I. 1 - 2.80 - C.I. 2 - 4.10 - C.I. 2 - 4.70 -						
8 9 10	- 1.6	0.80	-10.40 -11.00		Sabbia limosa di colore grigio Limo sabbioso di colore grigio		- 7.30 - CD 2 - 7.70 -					
12 13 14 15	- 2.0 - 1.7 - 1.5 - 1.6 - 2.0 - 2.5 - 2.8	- 0.80 - 0.70 - 0.70 - 0.70 - 0.80 - 1.10 - 1.20 - 1.20	-11.60 -12.20 -15.00		Argilla limosa di colore grigio con striature nere, rari bioclasti e rari calcinelli Campione indisturbato Argilla limosa di colore grigio con striature nere, rari bioclasti e rari calcinelli	11.60 C.I. 3 12.20						
16 17 18 19 20												

Note:

C.I. = campioni indisturbati
CD = campioni rimaneggiati

File: MOD_STR Rev-4

Studio Geologico e Ambientale Dott.ssa Claudia Borelli Strada Cavedole12/C 41126 Portile (MO) Tel e fax +39 059 784335 Cell. +39 339 8179913 email c.borelli@studio-borelli.191.it

ALLEGATO 7
CERTIFICATI DELLE PROVE DI LABORATORIO

Studio Geologico e Ambientale Dott.ssa Claudia Borelli Strada Cavedole12/C 41126 Portile (MO) Tel e fax +39 059 784335 Cell. +39 339 8179913 email c.borelli@studio-borelli.191.it

DIVERSIVO FOSSA NUOVA CAVATA

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: <u>info@sinergea.com</u>

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 16/03/2015

COMMESSA N°: 15/013c VERBALE DI ACCETTAZIONE N°: 15/0035 CSP

DATA ACCETTAZIONE: **22/01/2015**

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

SONDAGGIO: S4 CAMPIONE: CI 1

PROFONDITA' (m): 2.20-2.80 CONTENITORE /PRESTAZIONE: fustella acciaio

PRELIEVO/PROVA ESEGUITO DA: SOGEO srl

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE: 20/01/2015

OSSERVAZIONI:

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

CODICE PROVA	DESCRIZIONE SINTETICA	Q.tà	NORME DI RIFERIMENTO	CERTIFICATO DI PROVA
DSC01a	Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica	1	ASTM D 2488-84	CSP15/0035-01
PSG01	Peso specifico dei grani	1	CNR UNI 10013	CSP15/0035-02
LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP15/0035-03
GRT04	Granulometria combinata per vagliatura e sedimentazione	1	ASTM D 422	CSP15/0035-04
TRX02a	Prova triassiale CIU , compresi saturazione del provino e rilievo pressioni interstiziali	3	ASTM D 4767	CSP15/0035-05

per SINERGEA srl

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

CERTIFICATO n°: CSP_15/0035-01

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0035_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

AUTORIZZAZIONE SCRITTA DELLA SINERGEA srl.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE : fustella di acciaio

Sondaggio: S4 Campione: Cl 1 Profondità: 2.20 - 2.80 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
DSC	Descrizione geotecnica del campione	1	ASTM D 2488-84

DATA INIZIO PROVA: 03/03/2015

DATA TERMINE PROVA: 03/03/2015

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Enrico BERTOCCHI Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

 Cap. soc. €.
 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

 CPR_001 (Rev. 1 del 04/05)
 File: CPR_001_DSC.xls
 Sistema Qualità SINERGEA srl

CERTIFICATO n° CSP_15/0035-01 DATA EMISSIONE 16/03/2015

Pagina 2 di 3

DESCRIZIONE GEOTECNICA DEL CAMPIONE - ASTM D2488

SONDAGGIO: S4 **CAMPIONE:** CI 1 **PROFONDITA':** 2.20 ÷ 2.80 m

Data descrizione : 03/03/15 Forma del campione : cilindrica

Qualità del campione (AGI): Q.5. Dimensioni del campione : L = 50 cm; $\phi = 8,4$ cm

	Profo	ndità	Descrizione
	da m	a m	
A srl.	2.30	2.37	Campione rimaneggiato.
<u> IZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL</u>	2.37	2.80	A L / A con L di colore bruno giallastro (HUE 10YR 5/4) passante a bruno grigiastro scuro (HUE 10YR 4/2). Presenza di veli e puntinature nerastre e brunastre, frustoli, veli calcarei, mica. Media/Forte reazione a contatto con HCl 5%.

 $\mathbf{G} = \text{Ghiaia/Ghiaioso}$ $\mathbf{F} = \text{Fine}$ $\mathbf{M} = \text{Medio}$ $\mathbf{C} = \text{Grossolano}$

Per i colori si fa riferimento a: "Munsell Soil Color Charts" (sigla tra parentesi)

^ = perpendicolare all'asse del campione = parallelo all'asse del campione

0		^			asse del ca	mpione	= parallelo all'asse del campione
OR1	SCH	IEMA DE	L CAMPI	ONE	P.P.	T.V.	PROVE ESEGUITE
ΔPP	Prof. No	ominale	Profond	ità reale	(MPa)	(MPa)	
П Р	(m)			(m)			
È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO				2.30 2.37	0.17 = 0.20 ^ 0.23 ^	(IIII d)	
	2.80			2.80	0.25 ^		CNW, MVT, TCU provino 3 LIM, GRA, PSG CNW, MVT, TCU provini 1 e 2

LEGENDA: CNW = contenuto in acqua il significato degli altri codici, è riportato sulla prima pagina dei certificati di prova MVT = massa volumica

DIRETTORE DI LABORATORIO

SPERIMENTATORE

CPR_001 (Rev. 1 del 04/05) File : CPR_001_DSC.xls Sistema Qualità SINERGEA srl

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

LABORATORIO GEOTECNICO

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n° CSP_15/0035-01 DATA EMISSIONE: 16/03/2015

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO n°: S4 CAMPIONE: Cl 1 PROFONDITA': 2.20 - 2.80 m

DIRETTORE DI LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CPR_001 (Rev. 1 del 04/05) File : CPR_001_DSC.xls Sistema Qualità SINERGEA srl

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°: CSP_15/0035-02

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0035_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

JTORIZZAZIONE SCRITTA DELLA SINERGEA Srl.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA I

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE: fustella di acciaio

Sondaggio: S4 Campione: Cl 1 Profondità: 2.20 - 2.80 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
PSG	Determinazione del peso specifico dei grani	1	CNR UNI 10013

DATA INIZIO PROVA: 10/03/2015

DATA TERMINE PROVA: 16/03/2015

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE
Dott. Enrico BERTOCCHI

IL DIRETTORE DEL LABORATORIO Dott. Geol. Dario GRUNDLER

CERTIFICATO n°

CSP_15/0035-02

DATA EMISSIONE 16/03/2015

Pagina 2 di 2

DETERMINAZIONE DEL PESO SPECIFICO DEI GRANI (G_s)

SONDAGGIO: S4 CAMPIONE: CI 1 PROFONDITA': 2.20 ÷ 2.80 m

NORMATIVA DI RIFERIMENTO : CNR UNI 10013							
PROFONDITA' PROVINO	da m	2.	62 a m	2.80			
DETERMINAZIONE n°			1	2			
Picnometro n°		-	0	3			
Peso picnometro	Р	g	47.8910	51.9279			
Peso picnometro + campione	P+Cs	g	69.4384	72.9487			
Peso campione secco	Cs	g	21.5474	21.0208			
Peso picnometro + acqua	Pa	g	151.2700	148.9555			
Peso picnometro + acqua + campione	Pt	g	164.8992	162.2713			
Temperatura dell' acqua	Т	°C	18	18			
Massa volumica H ₂ 0 alla temperatura T	g w	Mg/m³	0.99862	0.99862			
Peso specifico dei grani	G _s		2.721	2.728			
Massa volumica della parte solida	gs	Mg/m³	2.717	2.724			
Valore medio g _s		Mg/m³	2.7	721			
Valore medio G _s	2.7	725					

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

CPR_005 (Rev. 1 del 04/05) File : CPR_005_PSG.xls Sistema Qualità SINERGEA srl

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°: CSP_15/0035-03

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0035_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

JTORIZZAZIONE SCRITTA DELLA SINERGEA SII.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AL

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE: fustella di acciaio

Sondaggio: S4 Campione: Cl 1 Profondità: 2.20 - 2.80 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
LIM	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA: 06/03/15

DATA TERMINE PROVA: 09/03/15

TIMBRO BLU SULL' ORIGINALE

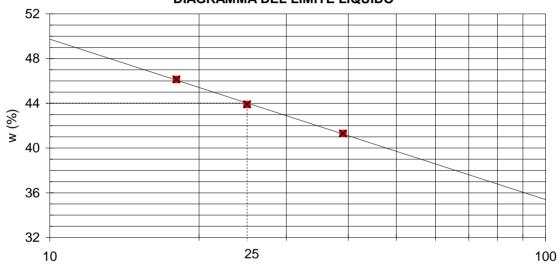
SPERIMENTATORE
Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. $10.000 \, i.v. - Reg. \, Imp. \, BO, \, C.F. \, e \, P. \, IVA$: $01909241208 - R.E.A. \, 398565$

CPR_008 (Rev. 1 del 04/05) File: CPR_008_LIM.xls Sistema Qualità SINERGEA srl

CERTIFICATO n° CSP_15/0035-03 DATA EMISSIONE 16/03/2015


Pagina 2 di 2

DETERMINAZIONE DEI LIMITI DI CONSISTENZA - ASTM D4318 - Metodo A

SONDAGGIO: S4 CAMPIONE: CI 1 PROFONDITA': 2.20 ÷ 2.80 m

Profondità provino	m	2.60-2.80				
Determinazione	n°	1	2	3	4	
Massa tara	g	35.6334	56.2330	56.0535	-	
Numero colpi	=	18	25	39	-	
Massa provino umido + tara	g	64.5026	88.6520	86.1510	-	
Massa provino secco + tara	g	55.3879	78.7583	77.3535	-	
Contenuto in acqua	%	46.1	43.9	41.3	=	
Limite Liquido w _L	%	44				

DIAGRAMMA DEL LIMITE LIQUIDO

NUMERO DI COLPI

Determinazione	n°	1	2	3	4
Massa tara	g	13.4172	14.0307	-	-
Massa provino umido + tara	g	16.3967	16.8678	-	-
Massa provino secco + tara	g	15.8559	16.3709	-	-
Contenuto in acqua	%	22.2	21.2	ı	-
Limite Plastico w _P	%	22			

Indice di Plasticità (w _L - w _P)					
I _P	22				

DIRETTORE DI LABORATORIO

Sperimentatore

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

CERTIFICATO n°: CSP 15/0035-04

VERBALE DI ACCETTAZIONE n°: COMMESSA: 15/013c 15/0035_CSP

RICHIEDENTE: Dott, Geol, Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

AUTORIZZAZIONE SCRITTA DELLA SINERGEA srl.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: DATA DI EMISSIONE: 22/01/2015 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE: fustella di acciaio

Sondaggio : 2.20 2.80 S4 Campione: CI 1 Profondità: m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI:

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
GRA	Analisi granulometrica	1	ASTM D 422

DATA INIZIO PROVA: 04/03/2015

DATA TERMINE PROVA: 12/03/2015

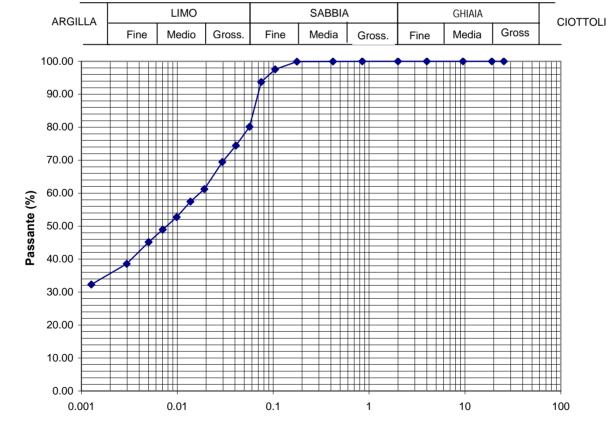
TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565 File: CPR_006_GRA_SED.xls CPR_006 (Rev. 1 del 04/05) Sistema Qualità SINERGEA srl

Dott. Enrico BERTOCCHI


 CERTIFICATO n°
 CSP_15/0035-04
 DATA EMISSIONE
 16/03/2015

 Pagina 2 di 2

ANALISI GRANULOMETRICA - ASTM D 422

 $\textbf{SONDAGGIO} \hspace{0.1cm} : \hspace{0.3cm} \textbf{S4} \hspace{1.5cm} \textbf{CAMPIONE:} \hspace{0.3cm} \textbf{CI 1} \hspace{1.5cm} \textbf{PROFONDITA':} \hspace{0.3cm} 2.20 \hspace{0.3cm} \div \hspace{0.3cm} 2.80 \hspace{0.3cm} \textbf{m}$

1A	NALISI PER	VAGLIATU	RA	ANALISI PER SE	DIMENTAZIONE
massa prov	ino - 32	24.41 g		massa provino 4	7.02 g
profondità p	rovino 2	2.62 ÷	2.80 m	profondità provino	2.62 ÷ 2.80 m
VAGLI	APERTURA	PASSANTE	TRATTENUTO	G_s 2	.725 - determinato
	mm	% in peso	% in peso	Riferimento: CSP_15	/0035-02
1 1/2 "	38.1			eseguita sul passante a	l vaglio 200
1 "	25.4	100.00	0.00	aerometro ASTM 15	1H
3/4 "	19.05	100.00	0.00	DIAMETRO EQUIVALENTE	% IN PESO PIU' FINE DI D
3/8 "	9.525	100.00	0.00	D (mm)	
5	4	100.00	0.00	0.05670	80.13
10	2	100.00	0.00	0.04094	74.47
20	0.85	99.99	0.01	0.02947	69.43
30	0.59			0.01916	61.24
40	0.42	99.96	0.03	0.01372	57.46
50	0.297		I	0.00985	52.74
80	0.177	99.90	0.06	0.00704	48.96
100	0.149		I	0.00504	45.18
140	0.105	97.59	2.31	0.00296	38.57
200	0.075	93.72	3.87	0.00127	32.27

DIRETTORE DI LABORATORIO

Sperimentatore

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L' AUTORIZZAZIONE SCRITTA DELLA SINERGEA SII.

Diametro dei granuli (mm)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pag. 1 di 5

CERTIFICATO n°: CSP_15/0035-05

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0035_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE : fustella di acciaio

Sondaggio: S4 Campione: Cl 1 Profondità: 2.20 - 2.80 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
TCU	Prova triassiale consolidata isotropicamente non drenata	3	ASTM D 4767
CTX	Calcolo tempi di consolidazione su provini per prova triassiale	1	ASTM D 2435

DATA INIZIO PROVA: 09/03/2015

DATA TERMINE PROVA: 12/03/2015

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Enrico BERTOCCHI

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

CPR_029 (Rev. 1 del 04/05) File : CPR_029_TCU.xls Sistema Qualità SINERGEA srl

CERTIFICATO n° CSP_15/0035-05 DATA EMISSIONE: 16/03/2015

Pag. 2 di 5

PROVA	TRIASSI	ALE C.	l.U.		ASTM D 4767					
SONDA	GGIO	: 5	64 CAMI	PIONE	: CI1	PROFONDITA	! : 2.20	÷	2.80	
PROVIN	0			n°	1	2	3		-	_
Profondità	provino			da m	2.71	2.71	2.62		-	
Profondità	provino			a m	2.80	2.80	2.71		-	
Condiz ione	del provino			-	indisturbato	indisturbato	indisturbato		-	
	niziale provin	0		mm	38.10	38.10	38.10		-	
	iale provino			mm	76.20	76.20	76.20		-	
σ'3 iniziale				kPa	49.90	98.70	194.60		-	
	alore (σ1 - α		(1 0)	kN/m²	136.71	174.84	236.91		-	_
			su (σ1 - σ3) max	kN/m²	3	3	3		-	_
	valore σ'1/σ'3 e per filtro e membrana su (σ'1/σ'3) max			kN/m²	4.37	3.28	2.98		-	_
Correzione MODALIT <i>A</i>	e per filtro e n A' DI ROTTU	<u>nembrana</u> RA	su(oʻ1/oʻ3)max	kN/m²	1	1	2		-	_
	e sup. di rotti		ica del provino	°sess.	35	-	37		-	
	■ pi	rovino 1 (. efficaci)	♦ pro	vino 2 (t. efficaci)	▲ pro	vino 3 (t. efficaci)		. – – –	_
		rovino 1 (-	•	vino 2 (t. totali)		vino 3 (t. totali)			
0.5	-0			ST	RESS PATHS	}				
25	00 —									-
20	00									
d (kN/m²)	-							△		
ه 10	00				TO THE PARTY OF TH		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			
5	50		Control of the second	A THE THE PARTY OF	TEL CHILITITIES		ΔΔ"			
			C.C.C.C.C.	Intitude the last of the last						

IL DIRETTORE DEL LABORATORIO

50

100

0

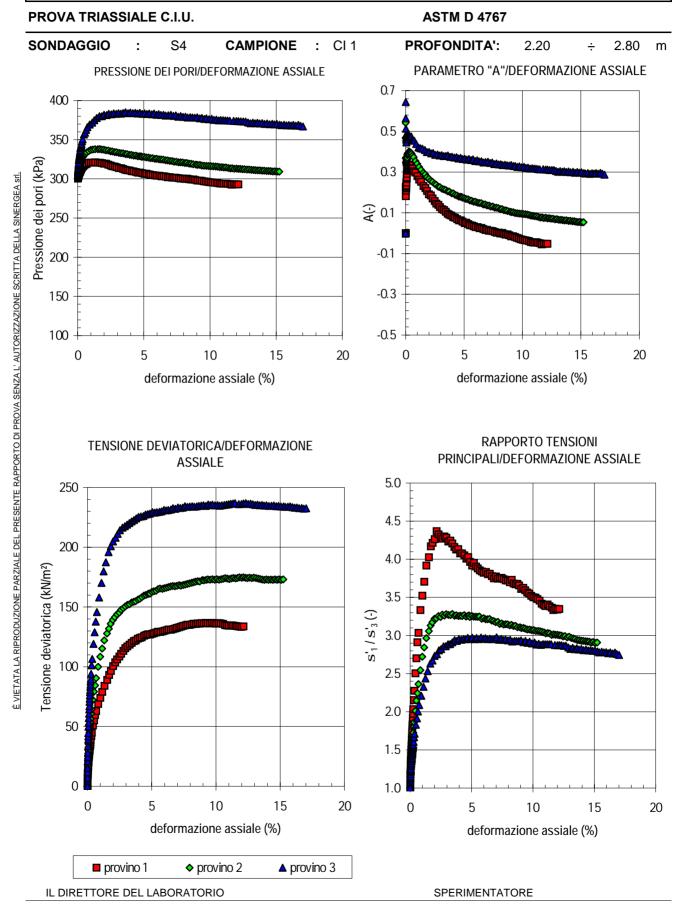
SPERIMENTATORE

350

300

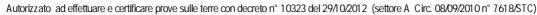
40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949 CPR_029 (Rev. 1 del 04/05) File : CPR_029_TCU.xls Sistema Qualità SINERGEA srl

150


200

 $p (kN/m^2)$

250


 CERTIFICATO n°
 CSP_15/0035-05
 DATA EMISSIONE
 16/03/2015

 Pag. 3 di 5

CPR_029 (Rev. 1 del 04/05) File: CPR_029_TCU.xls Sistema Qualità SINERGEA srl

srl

CERTIFICATO n° CSP_15/0035-05 DATA EMISSIONE 16/03/2015

Pag. 4 di 5

PROVA TRIASSIALE C.I.U.

SINERGEA

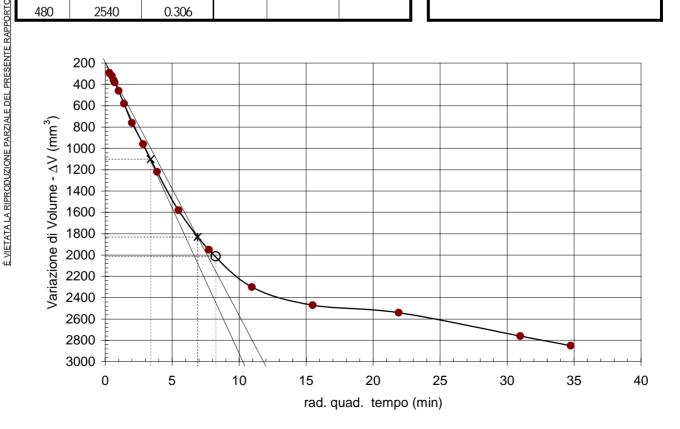
ASTM D 4767

SC	ONDAGGIO : S4 CAMPIC	NE :	CI 1 P I	ROFONDITA':	2.20 ÷	2.80 m
	PROVINO	n°	1	2	3	-
	Profondità provino	da m	2.71	2.71	2.62	-
	Profondità provino	a m	2.80	2.80	2.71	-
	Condizione del provino	-	indisturbato	indisturbato	indisturbato	-
	Diametro iniziale provino	mm	38.10	38.10	38.10	-
	Altezza iniziale provino	mm	76.20	76.20	76.20	-
	Massa volumica totale	kN/m³	19.38	19.22	19.31	-
	Riferimento Certificato					
7	Contenuto in acqua iniziale	%	24.98	25.31	24.79	-
アスつくカ	Riferimento Certificato					
7	Massa volumica secca	kN/m³	15.51	15.34	15.47	-
	Peso sp. dei grani (determinato)	-	2.725	2.725	2.725	-
2	Riferimento Certificato		CSP_15/0035-02	CSP_15/0035-02	CSP_15/0035-02	
	Indice dei vuoti iniziale	-	0.721	0.740	0.725	-
	Grado si saturazione iniziale	%	94.33	93.11	93.07	-
SAI URAZIONE	Pressione pori iniziale	kPa	-1.7	-1.2	-0.8	-
7	Valore di B iniziale	-	0.68	0.82	0.81	-
Ž	Pressione pori a saturazione	kPa	347.8	353	441	-
	Pressione in cella finale	kPa	400	400	500	-
ò	Valore di B a saturazione	-	0.95	1.00	0.94	-
	Durata consolidazione	min	-	1369	1208	-
ļ	Pressione in cella	kPa	350	400	500	-
5	Contropressione	kPa	300	300	300	-
Ĭ	Pressione pori iniziale	kPa	300.1	353	441	-
=	Pressione pori finale	kPa	300.1	300	301	-
2	Variazione altezza provino	mm	0.03	0.33	0.34	-
CONSOLIDAZIONE	Variazione volume provino	cm ³	0.50	1.19	3.25	-
5	t ₁₀₀	min	-	-	68.1	-
	Tempo di rottura stimato	min	-	-	120.1	-
	Pressione in cella	kPa	350	400	500	-
	Pressione pori iniziale	kPa	300.1	301	305	-
	σ'3 iniziale	kPa	49.9	98.7	194.6	-
	Velocità pressa	mm/min	0.0100	0.0100	0.0100	-
	massimo valore ($\sigma_1 - \sigma_3$)	kN/m²	137	175	237	-
	Deformaz. assiale percentuale a (σ1-σ3)max	%	9.22	12.14	11.49	-
	Tempo per il raggiungimento di (σ1-σ3)max	min	782	1032	880	-
5	Correzione per filtro e membrana su (σ1-σ3)max	kN/m²	3	3	3	-
200	Pressione pori a rottura a (σ1-σ3)max	kPa	298	313	374	-
CINITRES	Valore di A a rottura a (σ1-σ3)max	- I/NI /2	-0.02	0.07	0.31	-
₹	p' a rottura a (σ1-σ3)max	kN/m² kN/m²	120	175	244	-
3	q a rottura a (σ1-σ3)max massimo valore σ' _{1/} σ' ₃	kN/m²	68 4	87	118 3	-
	Deformaz. assiale percentuale a (oʻ1/oʻ3)max	% %	2.16	3.44	7.04	-
	Correzione per filtro e membrana su (oʻ1/oʻ3)max	kN/m²	2.10	3.44	7.04	-
	Pressione pori a rottura a (oʻ1/oʻ3)max	kPa	319	333	382	
	Valore di A a rottura a (oʻ1/oʻ3)max	in a	0.19	0.21	0.35	-
	p' a rottura a (oʻ1/oʻ3)max	kN/m²	83	144	235	-
	q a rottura a (oʻ1/oʻ3)max	kN/m²	52	77	117	-
	Massa volumica totale finale	kN/m³	19.60	19.58	19.90	-
ζ	Contenuto in acqua finale	%	25.63	25.84	23.79	
Y	Riferimento Certificato	/0	23.00	20.04	25.7	_
	Massa volumica secca finale	kN/m³	15.60	15.56	16.08	-
	Indice dei vuoti finale	N11/111	0.711	0.715	0.660	-
_	II IGIOO GOI VGOII III IGIO	%	98.15	98.30	98.10	

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949 CPR_029 (Rev. 1 del 04/05) File : CPR_029_TCU.xls Sistema Qualità SINERGEA srl


CERTIFICATO n°	CSP_15/0035-05	DATA EMISSIONE	16/03/2015
			Pag. 5 di 5

PROVA TRIASSIALE CIU

SONDAGGIO:	S4	CAMPIONE:							30 m
DET	DETERMINAZIONE DEI PARAMETRI DI CONSOLIDAZIONE (ASTM D2435-96)								
RELATIVI ALL	INCREI	MENTO DI $oldsymbol{s}^{\prime}{}_3$		da	50	kPa	а	200	kPa
PROVINO n.	3	PROFONDITA	1	da	2.62	m	а	2.71	m
Condizioni di d	enaggio	del provino: 2 estr	emità e ra	diale					

Srl.			VALORIN	MISURATI		
GEA	Tempo	ΔV	ΔH	Tempo	ΔV	ΔΗ
SINERGEA	(min)	(mm³)	(mm)	(min)	(mm³)	(mm)
Α	0.1	290	0.062	960	2760	1.461
DELI	0.25	320	0.079	1208	2850	1.465
4	0.4	360	0.080	-	-	-
SCRII I A DELLA	0.5	380	0.082	-	-	-
	1	460	0.094	-	-	-
AZIC	2	580	0.117	-	-	-
7	4	760	0.152			
AUTORIZZAZIONE	8	960	0.194			
4 L A	15	1220	0.227			
SENZA L	30	1580	0.266			
۷ ک	60	1950	0.297			
IRIO DI PROVA	120	2300	0.305			
וח	240	2470	0.306			
צו	480	2540	0.306			

VALORI CALCOLATI								
l ₉₀	(m	nin)	=	47.6				
a_{vi90}	(m	nm)	=	1830				
l ₅₀	(m	nin)	=	11.6				
a_{vi50}	(m	nm)	=	1102				
ī ₁₀₀	(m	nin)	=	68.1				
d _{vi10}	o (m	nm)	=	2012				
	•	·						
Tempo	oer il raggiu	ngime	ento	della rottura				
t _f (min)	=		120.1				
deforma	zione a rotti	ura ip	otizz	ata				
def. (mm)	=		6.0				
velocità	di rottura ca	alcolat	ta					
v (mm/min)	=	(0.04994				
m _{vi}	(m² /MN)	=		0.2496				

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CPR_029 (Rev. 1 del 04/05) File : CPR_029_TCU.xls Sistema Qualità SINERGEA srl

PROVA TRIASSIALE CIU (ASTM D 4767) - INTERPOLAZIONE DATI

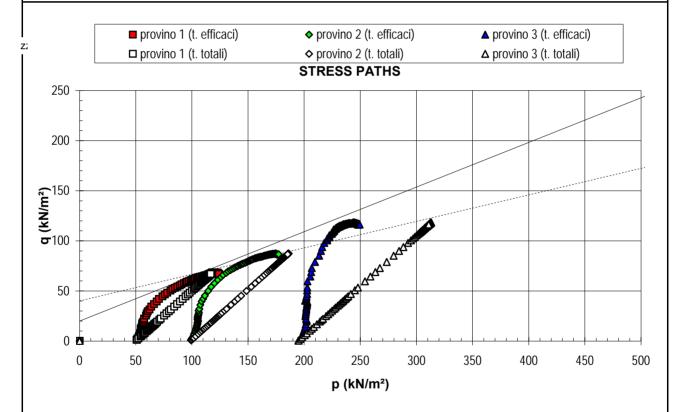
COMMITTENTE: Dott. Geol. Claudia BORELLI

Pag. 1 di 1

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

DATA EMISSIONE: 16/03/2015


SONDAGGIO: S4

CAMPIONE: CI 1 PROFONDITA': da m 2.20 a m 2.80

L'interpretazione sotto riportata è frutto di una regressione lineare operata sulle tensioni massime determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle finalità prefissate spetta al Progettista o Professionista incaricato.

	Tensioni efficaci		Tensioni totali	
Risultati della regressione lineare	Intercetta asse y	inclinaz. retta	Intercetta asse y	inclinaz. retta
Nisultati della regressione illeare	(kN/m ²)	(° sess.)	(kN/m ²)	(° sess.)
	19.98	24.01	40.15	14.81

Regressione lineare eseguita utilizzando tutti i provini

NOTE:

Regressione lineare eseguita utilizzando il valore massimo della tensione deviatorica

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

RAPPORTO DI PROVA n°: RSP_15/0068-01

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0068_SP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 09/03/15 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE : fustella acciaio

Sondaggio: S4 Campione: Cl 1 Profondità: 2.20 - 2.80 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: Campione identificato con verbale 15/0035_CSP

IL PRESENTE RAPPORTO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
CFV	Caratteristiche fisico-volumetriche	1	Norme applicabili

SPERIMENTATORE
Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

DRIZZAZIONE SCRITTA DELLA SINERGEA srl.

RAPPORTO DI PROVA nº

RSP_15/0068-01

DATA EMISSIONE:

16/03/2015

Pag 2 di 2

DETERMINAZIONE DELLE CARATTERISTICHE FISICO - VOLUMETRICHE

SONDAGGIO: S4 **CAMPIONE:** CI 1 PROFONDITA': 2.20 ÷ 2.80 m

PROFONDITA' PROVINO da m 2.62 2.80 a m

w	(%)	25.03
g	(Mg/m³)	1.969
gd	(Mg/m³)	1.574
G _s	-	2.725
gs	(Mg/m³)	2.721
Т	°C	18
g _w	Mg/m³	0.99862
е	-	0.728
n	(%)	42.14
S	(%)	93.50
g sat	(Mg/m³)	1.998
	g g d G s g s T g w e n S	g (Mg/m³) g d (Mg/m³) G s - g s (Mg/m³) T °C g w Mg/m³ e - n (%) S (%)

NOTA:

Valori calcolati in base ai valori medi di contenuto in acqua e peso di volume dei tre provini sottoposti a prova triassiale

Sperimentatore

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 16/03/2015

COMMESSA N°: 15/013c VERBALE DI ACCETTAZIONE N°: 15/0036 CSP

DATA ACCETTAZIONE: **22/01/2015**

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

SONDAGGIO: S4 CAMPIONE: CI 2

PROFONDITA' (m): 4.10-4.70 CONTENITORE /PRESTAZIONE: fustella acciaio

PRELIEVO/PROVA ESEGUITO DA: SOGEO srl

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE: 20/01/2015

OSSERVAZIONI:

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

CODICE PROVA	DESCRIZIONE SINTETICA	Q.tà	NORME DI RIFERIMENTO	CERTIFICATO DI PROVA
DSC01a	Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica	1	ASTM D 2488-84	CSP15/0036-01
PSG01	Peso specifico dei grani	1	CNR UNI 10013	CSP15/0036-02
LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP15/0036-03
GRT04	Granulometria combinata per vagliatura e sedimentazione	1	ASTM D 422	CSP15/0036-04
TRX03a	Prova triassiale CID , compresa la saturazione del provino	2	Raccomandazioni AGI	CSP15/0036-05

per SINERGEA srl

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

CERTIFICATO n°: CSP_15/0036-01

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0036_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

AUTORIZZAZIONE SCRITTA DELLA SINERGEA srl.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE : fustella di acciaio

Sondaggio: S4 Campione: Cl 2 Profondità: 4.10 - 4.70 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
DSC	Descrizione geotecnica del campione	1	ASTM D 2488-84

DATA INIZIO PROVA: 03/03/2015

DATA TERMINE PROVA: 03/03/2015

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE
Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

 Cap. soc. €.
 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

 CPR_001 (Rev. 1 del 04/05)
 File: CPR_001_DSC.xls
 Sistema Qualità SINERGEA srl

16/03/2015 **CERTIFICATO** n° CSP_15/0036-01 **DATA EMISSIONE**

Pagina 2 di 3

DESCRIZIONE GEOTECNICA DEL CAMPIONE - ASTM D2488

SONDAGGIO: S4 **CAMPIONE:** CI2 PROFONDITA': 4.10 4.70 m

Data descrizione 03/03/15 Forma del campione : cilindrica

Qualità del campione (AGI): Dimensioni del campione : L = 37 cm; $\phi = 8.4 \text{ cm}$ Q.5.

	Profo	ndità	Descrizione
	da m	a m	
EA srl.	4.33	4.45	Campione rimaneggiato.
SINERGEA	4.45	4.70	L S A di colore bruno (HUE 10YR 5/3) e bruno giallastro (HUE 10YR 5/6).
L' AUTORIZZAZIONE SCRITTA DELLA			Presenza di veli e puntinature nerastre e brunastre, apparati radicali, calcinelli,macropori, veli calcarei, mica. Media/Forte reazione a contatto con HCl 5%.
O DI PROVA SENZA	LEGENDA	G = G Per i colo	rgilla/Argilloso L = Limo/Limoso S = Sabbia/Sabbioso T = Torba/Torboso chiaia/Ghiaioso F = Fine M = Medio C = Grossolano ori si fa riferimento a: "Munsell Soil Color Charts" (sigla tra parentesi) erpendicolare all'asse del campione = parallelo all'asse del campione

perpendicolare all'asse del campione parallelo all'asse del campione

SCHEMA DEL CAMPIONE P.P. T.V. PROVE ESEGUITE								
ORT	SCH	IEMA DE	L CAMPI	ONE	P.P.	T.V.	PROVE ESEGUITE	
۸PP	Prof. No	ominale	Profond	lità reale	(MPa)	(MPa)		
ĒΡ	(m)			(m)				
È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO	4.10			4.33			CNW, MVT, TCD provini 2LIM, GRA, PSG	
	4.70			4.70			CNW, MVT, TCD provini 1	

LEGENDA: CNW = contenuto in acqua il significato degli altri codici, è riportato sulla prima pagina dei certificati di prova massa volumica

DIRETTORE DI LABORATORIO

SPERIMENTATORE

CPR_001 (Rev. 1 del 04/05) File: CPR_001_DSC.xls Sistema Qualità SINERGEA srl

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

LABORATORIO GEOTECNICO

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n° CSP_15/0036-01 DATA EMISSIONE: 16/03/2015

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO n°: S4 CAMPIONE: Cl 2 PROFONDITA': 4.10 - 4.70 m

DIRETTORE DI LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CPR_001 (Rev. 1 del 04/05) File : CPR_001_DSC.xls Sistema Qualità SINERGEA srl

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°: CSP_15/0036-02

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0036_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

JTORIZZAZIONE SCRITTA DELLA SINERGEA Srl.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA I

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE: fustella di acciaio

Sondaggio: S4 Campione: Cl 2 Profondità: 4.10 - 4.70 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
PSG	Determinazione del peso specifico dei grani	1	CNR UNI 10013

DATA INIZIO PROVA: 10/03/2015

DATA TERMINE PROVA: 16/03/2015

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE
Dott. Enrico BERTOCCHI

IL DIRETTORE DEL LABORATORIO Dott. Geol. Dario GRUNDLER

CPR_005 (Rev. 1 del 04/05) File : CPR_005_PSG.xls Sistema Qualità SINERGEA srl

CERTIFICATO n°

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SII.

CSP_15/0036-02

DATA EMISSIONE 16/03/2015

Pagina 2 di 2

DETERMINAZIONE DEL PESO SPECIFICO DEI GRANI (G_s)

SONDAGGIO: S4 CAMPIONE: CI 2 PROFONDITA': 4.10 ÷ 4.70 m

ETERMINAZIONE n° 1 2 chometro n° - 0 9 eso picnometro P g 44.3949 49.1644 eso picnometro + campione P+Cs g 66.5173 77.9837 eso campione secco Cs g 22.1224 28.8193 eso picnometro + acqua Pa g 146.2673 179.3629 eso picnometro + acqua + campione Pt g 160.3049 197.6233 emperatura dell' acqua T °C 18 18 essasa volumica H ₂ 0 alla temperatura T g W Mg/m³ 0.99862 0.99862					
PROFONDITA' PROVINO	da m	4.	50 a m	4.70	
DETERMINAZIONE n°			1	2	
Picnometro n°		-	0	9	
Peso picnometro	Р	g	44.3949	49.1644	
Peso picnometro + campione	P+Cs	g	66.5173	77.9837	
Peso campione secco	Cs	g	22.1224	28.8193	
Peso picnometro + acqua	Pa	g	146.2673	179.3629	
Peso picnometro + acqua + campione	Pt	g	160.3049	197.6233	
Temperatura dell' acqua	Т	°C	18	18	
Massa volumica H ₂ 0 alla temperatura T	g w	Mg/m³	0.99862	0.99862	
Peso specifico dei grani	G _s	-	2.736	2.729	
Massa volumica della parte solida	gs	Mg/m³	2.733	2.726	
Valore medio g _s		Mg/m³	2.7	729	
Valore medio G _s		_	2.7	733	

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

File: CPR_005_PSG.xls

CPR_005 (Rev. 1 del 04/05)

Sistema Qualità SINERGEA srl

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°: CSP_15/0036-03

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0036_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

JTORIZZAZIONE SCRITTA DELLA SINERGEA SII.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AL

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE: fustella di acciaio

Sondaggio: S4 Campione: Cl 2 Profondità: 4.10 - 4.70 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
LIM	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA: 13/03/15

DATA TERMINE PROVA: 16/03/15

TIMBRO BLU SULL' ORIGINALE

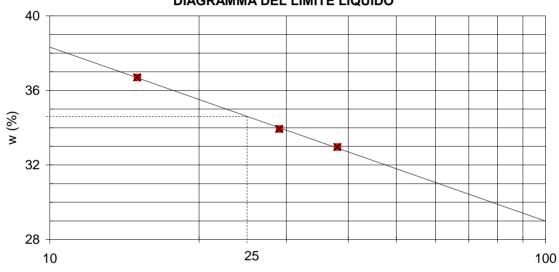
SPERIMENTATORE
Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. $10.000 \, i.v. - Reg. \, Imp. \, BO, \, C.F. \, e \, P. \, IVA$: $01909241208 - R.E.A. \, 398565$

CPR_008 (Rev. 1 del 04/05) File : CPR_008_LIM.xls Sistema Qualità SINERGEA srl

CERTIFICATO n° CSP_15/0036-03 DATA EMISSIONE 16/03/2015


Pagina 2 di 2

DETERMINAZIONE DEI LIMITI DI CONSISTENZA - ASTM D4318 - Metodo A

SONDAGGIO: S4 CAMPIONE: Cl 2 PROFONDITA': 4.10 ÷ 4.70 m

Profondità provino	m	4.50-4.70					
Determinazione	n°	1	2	3	4		
Massa tara	g	31.0796	44.7775	52.4884	-		
Numero colpi	=	38	15	29	-		
Massa provino umido + tara	g	58.0161	74.9351	79.3657	-		
Massa provino secco + tara	g	51.3381	66.8385	72.5560	-		
Contenuto in acqua	%	33.0	36.7	33.9	-		
Limite Liquido w _L	%	35					

DIAGRAMMA DEL LIMITE LIQUIDO

NUMERO DI COLPI

Determinazione	n°	1	2	3	4	
Massa tara	g	13.3653	14.0308	-	-	
Massa provino umido + tara	g	16.494	16.8715	-	-	
Massa provino secco + tara	g	15.9607	16.4036	-	-	
Contenuto in acqua	%	20.5	19.7	ı	ı	
Limite Plastico w _P	%	20				

	Indice di Plasticità (w _L - w _P)
I _P	15

DIRETTORE DI LABORATORIO

Sperimentatore

CPR_008 (Rev. 1 del 04/05) File : CPR_008_LIM.xls Sistema Qualità SINERGEA srl

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

CERTIFICATO n°: CSP_15/0036-04

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0036_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

AUTORIZZAZIONE SCRITTA DELLA SINERGEA srl.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE : fustella di acciaio

Sondaggio: S4 Campione: Cl 2 Profondità: 4.10 - 4.70 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
GRA	Analisi granulometrica	1	ASTM D 422

DATA INIZIO PROVA: 04/03/2015

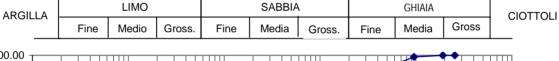
DATA TERMINE PROVA: 12/03/2015

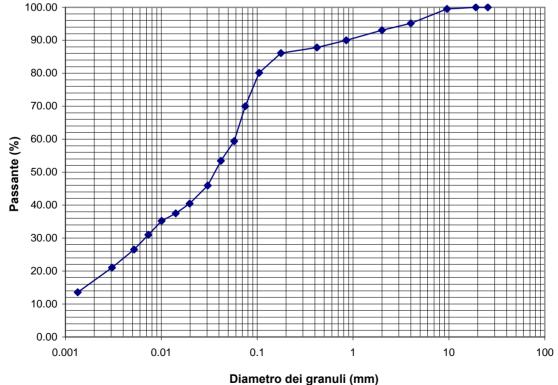
TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE
Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

 Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565


 CPR_006 (Rev. 1 del 04/05)
 File: CPR_006_GRA_SED.xls
 Sistema Qualità SINERGEA srl


CERTIFICATO n° CSP_15/0036-04 DATA EMISSIONE 16/03/2015
Pagina 2 di 2

ANALISI GRANULOMETRICA - ASTM D 422

SONDAGGIO : S4 **CAMPIONE**: CI 2 **PROFONDITA'**: $4.10 \div 4.70 \text{ m}$

AN	NALISI PER	VAGLIATUF	RA	ANALISI PER SE	DIMENTAZIONE
massa prov	ino - 46	65.87 g		massa provino 4	4.34 g
profondità p	rovino 4	4.50 ÷ 4	4.70 m	profondità provino	4.50 ÷ 4.70 m
VAGLI	APERTURA	PASSANTE	TRATTENUTO	G_s 2	.733 - determinato
	mm	% in peso	% in peso	Riferimento: CSP_15/	/0036-02
1 1/2 "	38.1			eseguita sul passante a	l vaglio 200
1 "	25.4	100.00	0.00	aerometro ASTM 15	1H
3/4 "	19.05	100.00	0.00	DIAMETRO EQUIVALENTE	% IN PESO PIU' FINE DI D
3/8 "	9.525	99.51	0.49	D (mm)	
5	4	95.12	4.39	0.05763	59.38
10	2	93.05	2.07	0.04185	53.41
20	0.85	90.01	3.05	0.03054	45.94
30	0.59			0.01974	40.46
40	0.42	87.83	2.18	0.01412	37.47
50	0.297		-	0.01007	35.23
80	0.177	86.11	1.72	0.00732	31.00
100	0.149		[0.00520	26.52
140	0.105	80.11	6.00	0.00306	21.04
200	0.075	70.01	10.11	0.00135	13.57

DIRETTORE DI LABORATORIO

Sperimentatore

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°: CSP_15/0036-05

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0036_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE : -

Sondaggio: S4 Campione: Cl 2 Profondità: 4.10 - 4.70 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: a cura del Committente

DATI FORNITI da: -

OSSERVAZIONI: -

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SAI.

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
TCD	Prova triassiale consolidata isotropicamente, drenata	2	p.i. POP-043
CTX	Calcolo tempi di consolidazione su provini per prova triassiale	1	ASTM D 2435

DATA INIZIO PROVA: 07/03/2015

DATA TERMINE PROVA: 11/03/2015

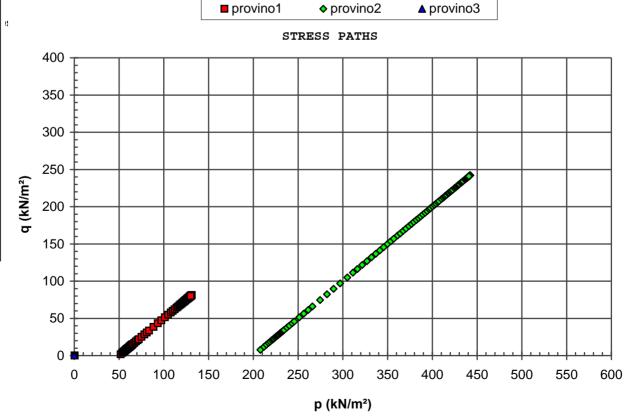
TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE
Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

CPR_030 (Rev. 1 del 04/05) File: CPR_030_TCD.xls Sistema Qualità SINERGEA srl

CERTIFICATO n°


CSP_15/0036-05

DATA EMISSIONE: 16/03/2015

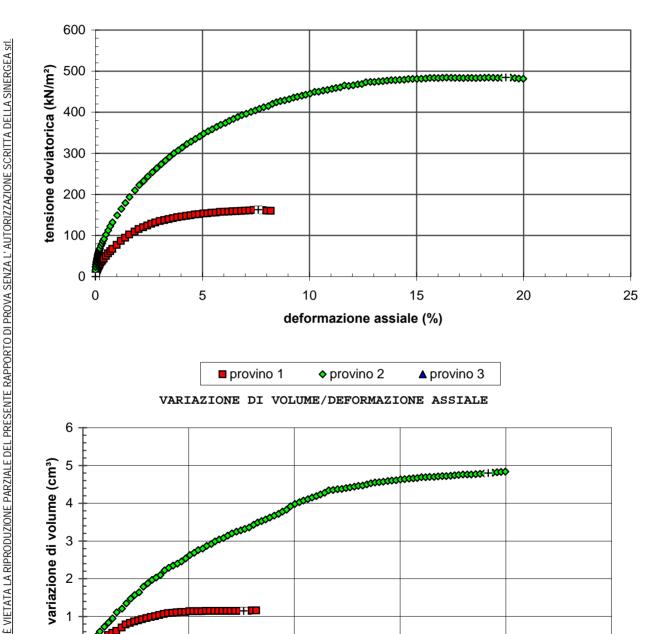
Pagina 2 di 5

PROVA TRIASS	SIALE C.I.D.			proc	edura int	terna	POP-0)43
SONDAGGIO	: S4	CAMPIONE	: CI2	PROFONDITA':	4.10	÷	4.70	m

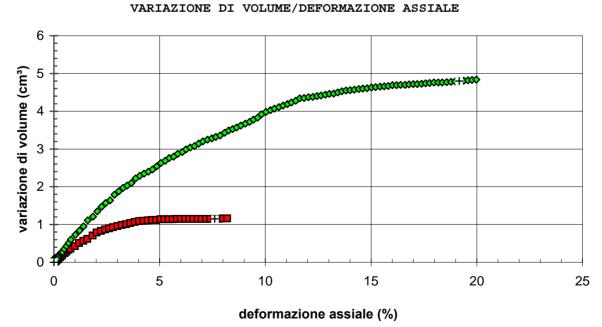
PROVINO						
		n°	1	2	-	-
Profondità p	provino	da m	4.60	4.50	-	-
Profondità p	provino	a m	4.70	4.60	-	-
Condizione		-	indisturbato	indisturbato	-	-
	iziale provino	mm	38.10	38.10	-	-
Altezza inizi	iale provino	mm	76.20	76.20	-	-
σ′3		kPa	50.00	200.00	-	-
(σ1 - σ3)	a rottura	kN/m²	162.73	484.58	-	-
	' DI ROTTURA					
Inclinazione	e sup. di rottura resentazione schematica	°sess.	-	-	-	-
ដ		■ provino1	◆ provino2	. ≜ provinc	p3	
			◆ provino2 TRESS PATHS	. ▲ provinc	03	
400	<u> </u>			. ▲ provinc	p3	
400				d provinc	o3	
				. ▲ provinc	03	
400 350				2 ▲ provinc	03	
400				e ▲ provinc	53	
400 350				2. ▲ provinc	p3	
400 350 300 250				. ▲ provinc	53	
400 350 300 250				2. ▲ province	D3	
400 350 300 250				2 ▲ provinc	03	
400 350 300 250				2. ▲ province	D3	
400 350 300 250					53	

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE


CSP_15/0036-05 **CERTIFICATO** n°

16/03/2015 **DATA EMISSIONE:**


Pagina 3 di 5

PROVA TRIASS	SIALE	C.I.D.				proce	edura int	erna	POP-0)43
SONDAGGIO	:	S4	CAMPIONE	:	CI 2	PROFONDITA':	4.10	÷	4.70	m

TENSIONE DEVIATORICA/DEFORMAZIONE ASSIALE

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

CERTIFICATO n° CSP_15/0036-05

DATA EMISSIONE: 16/03/2015

Pagina 4 di 5

procedura interna POP-043 PROVA TRIASSIALE C.I.D. **SONDAGGIO S4 CAMPIONE** CI₂ PROFONDITA': 4.10 4.70 **PROVINO** 1 2 n° Profondità provino 4.60 4.50 da m Profondità provino a m 4.70 4.60 Condizione del provino indisturbato indisturbato _ Diametro iniziale provino 38.10 38.10 mm Altezza iniziale provino 76.20 76.20 mm _ SINFRGFA INIZIO PROVA 18.71 Massa volumica apparente kN/m³ 18.42 Riferimento Certificato % 28.90 29.02 Contenuto in acqua Riferimento Certificato SCRITTA 14.29 Massa volumica secca kN/m3 14.50 Peso sp. dei grani (determinato) 2.733 2.733 Riferimento Certificato CSP 15/0036-02 CSP 15/0036-02 Indice dei vuoti 0.873 0.845 Grado si saturazione % 90.29 93.67 FASE DI SATURAZIONE Pressione pori iniziale kPa 3.0 -0.8 Valore di B iniziale 0.83 0.91 Pressione pori a saturazione kPa 348.5 442.4 Pressione in cella finale kPa 400.0 500.0 Valore di B a saturazione 0.96 0.95 FASE DI CONSOLIDAZIONE (durata) 1239 min kPa 350.0 500.0 \overline{c} Pressione in cella RAPPORTO Contropressione kPa 300.0 300.0 Pressione pori iniziale kPa 300.7 442.4 Pressione pori finale kPa 300.7 301.7 Variazione altezza provino 0.37 0.57 mm PRESENTE Variazione volume provino 2.62 4.34 cm³ 10.9 t₁₀₀ min Tempo di rottura calcolato min -15.6 _ FASE DI COMPRESSIONE PARZIAI F Pressione in cella kPa 350.0 500.0 Contropressione kPa 300.0 300.0 σ′3 kPa 50.0 200.0 RIPRODUZIONE 0.005 0.005 Velocità pressa mm/min CONDIZIONI A ROTTURA % 7.6 Deformaz, assiale percentuale 19.2 (σ 1 - σ 3) a rottura kN/m² 162.73 484.58 Variazione di volume a rottura 4.80 cm³ 1.15 p' a rottura kN/m² 131.4 442.3 q a rottura kN/m² 81.4 242.3 Tempo di rottura effettivo min 1161.4 2901.5 FINE PROVA Variazione di volume totale cm³ 3.78 9.18 Massa volumica apparente finale kN/m³ 19.22 20.02 Contenuto in acqua finale % 28.64 23.42 Riferimento Certificato 14.94 16.22 Massa volumica secca finale kN/m3 Indice dei vuoti finale 0.792 0.650 Grado si saturazione finale % 98.73 98.34

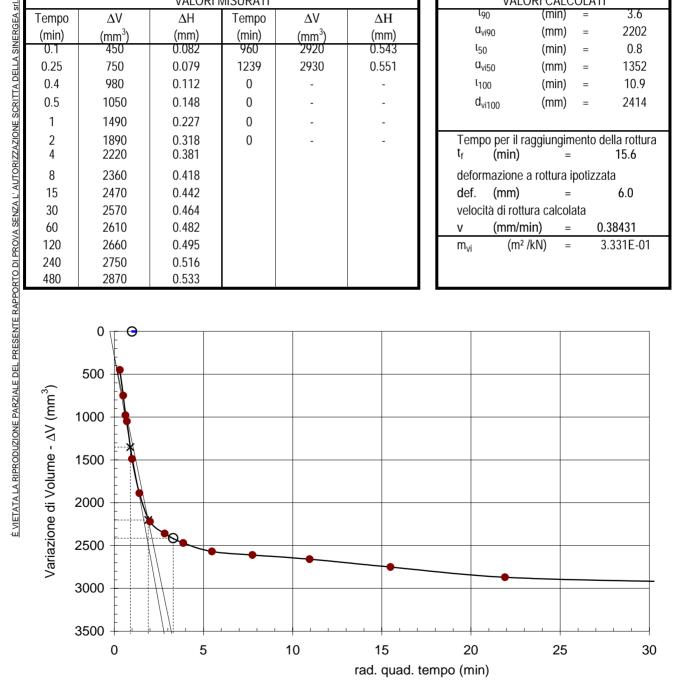
IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

CERTIFICATO n°

CSP_15/0036-05

16/03/2015 DATA EMISSIONE:


Pagina 5 di 5

PROVA TRIASSIALE CID

CAMPIONE: PROFONDITA': SONDAGGIO: S4 CI2 4.10 4.70 DETERMINAZIONE DEI PARAMETRI DI CONSOLIDAZIONE (ASTM D2435-96) RELATIVI ALL' INCREMENTO DI s'_3 da 50 kPa 200 kPa а 2 PROFONDITA' PROVINO n. da 4.50 4.60 m а m Condizioni di drenaggio del provino: 2 estremità e radiale

-			VALORI N	MISURATI		
	Tempo	ΔV	ΔΗ	Tempo	ΔV	ΔΗ
	(min)	(mm ³)	(mm)	(min)	(mm ³)	(mm)
5	0.1	450	0.082	960	2920	0.543
	0.25	750	0.079	1239	2930	0.551
2	0.4	980	0.112	0	-	-
	0.5	1050	0.148	0	-	-
i	1	1490	0.227	0	-	-
j	2 4	1890	0.318	0	-	-
j	4	2220	0.381			
	8	2360	0.418			
	15	2470	0.442			
į	30	2570	0.464			
	60	2610	0.482			
2	120	2660	0.495			
5	240	2750	0.516			
	480	2870	0.533			

	VALORI C	ALCC)LA1	Π
l ₉₀	(m	iin)	=	3.6
a_{vi90}	(m	ım)	=	2202
l ₅₀	(m	in)	=	8.0
a_{vi50}	(m	m)	=	1352
ι ₁₀₀	(m	in)	=	10.9
d _{vi100}	(m	m)	=	2414
Tempo p	er il raggiui	ngime	ento	della rottura
	min)	=		15.6
deforma	zione a rotti	ura ip	otizz	ata
def. (ı	mm)	=		6.0
velocità (di rottura ca	lcolat	a	
v (ı	mm/min)	=	(0.38431
m _{vi}	(m^2/kN)	=		3.331E-01

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CPR_030 (Rev. 1 del 04/05) File: CPR_030_TCD.xls Sistema Qualità SINERGEA srl

PROVA TRIASSIALE CID - INTERPOLAZIONE DATI

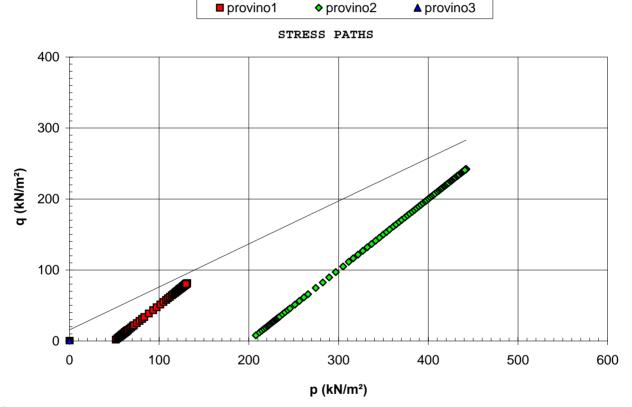
COMMITTENTE: Dott. Geol. Claudia BORELLI

Pagina 1 di 1

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

DATA EMISSIONE: 16/03/2015


SONDAGGIO: S4

CAMPIONE: Cl 2 PROFONDITA': da m 4.10 a m 4.70

L'interpretazione sotto riportata è frutto di una regressione lineare operata sulle tensioni massime determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle finalità prefissate spetta al Progettista o Professionista incaricato.

RISULTATI DELLA REGRESSIONE LINEARE	Intercetta su asse y (kN/m²)	coeff. angolare (° sess.)
MODE IN THE DEED THE ONE OF THE PINE	15.63	31.17

Regressione lineare eseguita utilizzando i provini 1 e 2

NOTE:			

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

RAPPORTO DI PROVA n°: RSP_15/0069-01

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0069_SP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 09/03/15 DATA DI EMISSIONE: 16/03/15

DESCRIZIONE CONTENITORE DEL CAMPIONE : fustella acciaio

Sondaggio: S4 Campione: Cl 2 Profondità: 4.10 - 4.70 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: Campione identificato con verbale 15/0036_CSP

IL PRESENTE RAPPORTO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
CFV	Caratteristiche fisico-volumetriche	1	Norme applicabili

SPERIMENTATORE
Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

È VIETATA LA RIPRODUZIONE PARZIALE O TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'

DRIZZAZIONE SCRITTA DELLA SINERGEA srl.

RAPPORTO DI PROVA nº

RSP_15/0069-01

DATA EMISSIONE:

16/03/2015

Pag 2 di 2

DETERMINAZIONE DELLE CARATTERISTICHE FISICO - VOLUMETRICHE

SONDAGGIO: S4 **CAMPIONE:** CI2 PROFONDITA': 4.10 ÷ 4.70 m

PROFONDITA' PROVINO da m 4.50 4.70 a m

Umidità naturale rif.to: Certificato/Rapporto di prova: CSP_15/0036-05	w	(%)	28.96
Massa volumica totale rif.to: Certificato/Rapporto di prova: CSP_15/0036-05	g	(Mg/m³)	1.893
Massa volumica secca	gd	(Mg/m³)	1.468
Peso specifico dei grani rif.to: Certificato/Rapporto di prova: CSP_15/0036-02	G _s	_	2.733
Massa volumica della parte solida	gs	(Mg/m³)	2.729
Temperatura dell' acqua	Т	°C	18
Massa volumica H ₂ 0 alla temperatura T	g _w	Mg/m³	0.99862
Indice dei vuoti	е	-	0.859
Porosità	n	(%)	46.22
Grado di saturazione	S	(%)	91.98
Massa volumica del terreno saturo	g sat	(Mg/m³)	1.932

NOTA:

Valori calcolati in base ai valori medi di contenuto in acqua e peso di volume dei tre provini sottoposti a prova triassiale

Sperimentatore

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 16/03/2015

COMMESSA N°: 15/013c VERBALE DI ACCETTAZIONE N°: 15/0037 CSP

DATA ACCETTAZIONE: **22/01/2015**

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

SONDAGGIO: S4 CAMPIONE: CI 3

PROFONDITA' (m): 11.60-12.20 CONTENITORE /PRESTAZIONE: fustella acciaio

PRELIEVO/PROVA ESEGUITO DA: SOGEO srl

DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE: 20/01/2015

OSSERVAZIONI:

PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

CODICE PROVA	DESCRIZIONE SINTETICA	Q.tà	NORME DI RIFERIMENTO	CERTIFICATO DI PROVA
DSC01a	Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica	1	ASTM D 2488-84	CSP15/0037-01
PSG01	Peso specifico dei grani	1	CNR UNI 10013	CSP15/0037-02
LIM03	Determinazione del Limite Liquido (multipoint-Method A) e del Limite Plastico	1	ASTM D 4318	CSP15/0037-03
GRT04	Granulometria combinata per vagliatura e sedimentazione	1	ASTM D 422	CSP15/0037-04
TRX02a	Prova triassiale CIU , compresi saturazione del provino e rilievo pressioni interstiziali	3	ASTM D 4767	CSP15/0037-05

per SINERGEA srl

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

CERTIFICATO n°: CSP_15/0037-01

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0037_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

AUTORIZZAZIONE SCRITTA DELLA SINERGEA srl.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE : fustella di acciaio

Sondaggio: S4 Campione: Cl 3 Profondità: 11.60 - 12.20 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
DSC	Descrizione geotecnica del campione	1	ASTM D 2488-84

DATA INIZIO PROVA: 04/03/2015

DATA TERMINE PROVA: 04/03/2015

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE
Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

 Cap. soc. €. 10.000 i.v. – Reg. Imp. BO, C.F. e P. IVA: 01909241208 – R.E.A. 398565

 CPR_001 (Rev. 1 del 04/05)

 File: CPR_001_DSC.xls

 Sistema Qualità SINERGEA srl

CERTIFICATO n° CSP_15/0037-01 DATA EMISSIONE 16/03/2015

Pagina 2 di 3

DESCRIZIONE GEOTECNICA DEL CAMPIONE - ASTM D2488

SONDAGGIO: S4 **CAMPIONE:** CI 3 **PROFONDITA':** $11.60 \div 12.20 \text{ m}$

Data descrizione : 04/03/15 Forma del campione : cilindrica

Qualità del campione (AGI): Q.5. Dimensioni del campione : L = 49 cm; $\phi = 8,4$ cm

Ī	Profc	ondità	Descrizione
	da m	a m	
IZA L' AUTORIZZAZIONE SCRITTA DELLA SINERGEA srl.	11.71	12.20	A L / A con L di colore grigio (HUE 5Y 5/1). Presenza di veli e puntinature nerastre e brunastre, frustoli. Debole reazione a contatto con HCl 5%.

 $\mathbf{G} = \text{Ghiaia/Ghiaioso}$ $\mathbf{F} = \text{Fine}$ $\mathbf{M} = \text{Medio}$ $\mathbf{C} = \text{Grossolano}$

Per i colori si fa riferimento a: "Munsell Soil Color Charts" (sigla tra parentesi)

^ = perpendicolare all'asse del campione = parallelo all'asse del campione

0		^			asse del ca	mpione	= parallelo all'asse del campione
ORT	SCH	IEMA DE	L CAMPI	ONE	P.P.	T.V.	PROVE ESEGUITE
PΡ	Prof. No	ominale	Profond	ità reale	(MPa)	(MPa)	
≡ R/	(m)			(m)	, ,	, ,	
È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO	(m) 11.60			(m)	0.16 = 0.24 ^ 0.25 ^ 0.24 ^ 0.27 ^ 0.32 ^ 0.30 ^ 0.25 ^		CNW, MVT, TCU provino 3LIM, GRA, PSG
	12.20			12.20	0.17 =		CNW, MVT, TCU provini 1 e 2

LEGENDA: CNW = contenuto in acqua il significato degli altri codici, è riportato sulla prima pagina dei certificati di prova MVT = massa volumica

DIRETTORE DI LABORATORIO SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CPR_001 (Rev. 1 del 04/05) File : CPR_001_DSC.xls Sistema Qualità SINERGEA srl

LABORATORIO GEOTECNICO

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

CERTIFICATO n° CSP_15/0037-01 DATA EMISSIONE: 16/03/2015

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO n°: S4 CAMPIONE: CI 3 PROFONDITA': 11.60 - 12.20 m

DIRETTORE DI LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CPR_001 (Rev. 1 del 04/05) File : CPR_001_DSC.xls Sistema Qualità SINERGEA srl

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°: CSP_15/0037-02

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0037_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

JTORIZZAZIONE SCRITTA DELLA SINERGEA Srl.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA I

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE: fustella di acciaio

Sondaggio: S4 Campione: Cl 3 Profondità: 11.60 - 12.20 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
PSG	Determinazione del peso specifico dei grani	1	CNR UNI 10013

DATA INIZIO PROVA: 10/03/2015

DATA TERMINE PROVA: 16/03/2015

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE
Dott. Enrico BERTOCCHI

IL DIRETTORE DEL LABORATORIO Dott. Geol. Dario GRUNDLER

CPR_005 (Rev. 1 del 04/05) File : CPR_005_PSG.xls Sistema Qualità SINERGEA srl

CERTIFICATO n°

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SII.

CSP_15/0037-02

16/03/2015 DATA EMISSIONE

Pagina 2 di 2

DETERMINAZIONE DEL PESO SPECIFICO DEI GRANI (G_s)

SONDAGGIO: S4 **CAMPIONE:** CI3 PROFONDITA': 11.60 ÷ 12.20 m

NORMATIVA DI RIFERIMENTO : CNR UNI 10013								
PROFONDITA' PROVINO	da m	12	.00 a m	12.20				
DETERMINAZIONE n°			1	2				
Picnometro n°		-	6	13				
Peso picnometro	Р	g	42.2491	44.8173				
Peso picnometro + campione	P+Cs	g	71.7980	64.1170				
Peso campione secco	Cs	g	29.5489	19.2997				
Peso picnometro + acqua	Pa	g	174.7801	148.5532				
Peso picnometro + acqua + campione	Pt	g	193.5181	160.8105				
Temperatura dell' acqua	Т	°C	18	18				
Massa volumica H ₂ 0 alla temperatura T	gw	Mg/m³	0.99862	0.99862				
Peso specifico dei grani	G _s	-	2.733	2.741				
Massa volumica della parte solida	gs	Mg/m³	2.729	2.737				
Valore medio g _s		Mg/m³	2.7	733				
Valore medio G _s			2.7	737				

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

CPR_005 (Rev. 1 del 04/05) File: CPR_005_PSG.xls

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

Sistema Qualità SINERGEA srl

Pagina 1 di 2

Autorizzato ad effettuare e certificare prove sulle terre con decreto nº 10323 del 29/10/2012 (settore A Circ. 08/09/2010 nº 7618/STC)

40057 Granarolo dell'Emilia (BO) – Loc. Quarto Inf. – via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°: CSP_15/0037-03

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0037_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

JTORIZZAZIONE SCRITTA DELLA SINERGEA SII.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L',

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE : fustella di acciaio

Sondaggio: S4 Campione: Cl 3 Profondità: 11.60 - 12.20 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
LIM	Determinazione del limite liquido e plastico	1	ASTM D 4318

DATA INIZIO PROVA: 06/03/15

DATA TERMINE PROVA: 09/03/15

TIMBRO BLU SULL' ORIGINALE

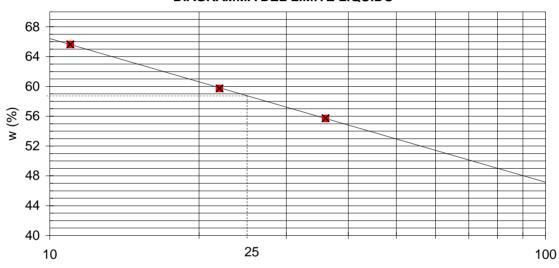
SPERIMENTATORE
Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. $10.000 \, i.v. - Reg. \, Imp. \, BO, \, C.F. \, e \, P. \, IVA$: $01909241208 - R.E.A. \, 398565$

CPR_008 (Rev. 1 del 04/05) File : CPR_008_LIM.xls Sistema Qualità SINERGEA srl

CERTIFICATO n° CSP_15/0037-03 DATA EMISSIONE 16/03/2015


Pagina 2 di 2

DETERMINAZIONE DEI LIMITI DI CONSISTENZA - ASTM D4318 - Metodo A

SONDAGGIO: S4 CAMPIONE: CI 3 PROFONDITA': 11.60 ÷ 12.20 m

Profondità provino	m					
Determinazione	n°	1	2	3	4	
Massa tara	g	35.2995	52.4876	46.3232	-	
Numero colpi	=	11	22	36	-	
Massa provino umido + tara	g	54.9476	77.7927	65.4964	-	
Massa provino secco + tara	g	47.1611	68.3303	58.6335	-	
Contenuto in acqua	%	65.6	59.7	55.7	=	
Limite Liquido w _L	%	59				

DIAGRAMMA DEL LIMITE LIQUIDO

NUMERO DI COLPI

Determinazione	n°	1	2	3	4
Massa tara	g	13.3653	13.917	-	-
Massa provino umido + tara	g	16.0199	16.4869	1	-
Massa provino secco + tara	g	15.4833	15.9795	1	-
Contenuto in acqua	%	25.3	24.6	ı	ı
Limite Plastico w _P	%	25			

Indice di Plasticità (w _L - w _P)			
I _P	34		

DIRETTORE DI LABORATORIO

Sperimentatore

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

CERTIFICATO n°: CSP_15/0037-04

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0037_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

AUTORIZZAZIONE SCRITTA DELLA SINERGEA srl.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 22/01/2015 **DATA DI EMISSIONE**: 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE : fustella di acciaio

Sondaggio: S4 Campione: Cl 3 Profondità: 11.60 - 12.20 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
GRA	Analisi granulometrica	1	ASTM D 422

DATA INIZIO PROVA: 06/03/2015

DATA TERMINE PROVA: 12/03/2015

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE
Dott. Enrico BERTOCCHI

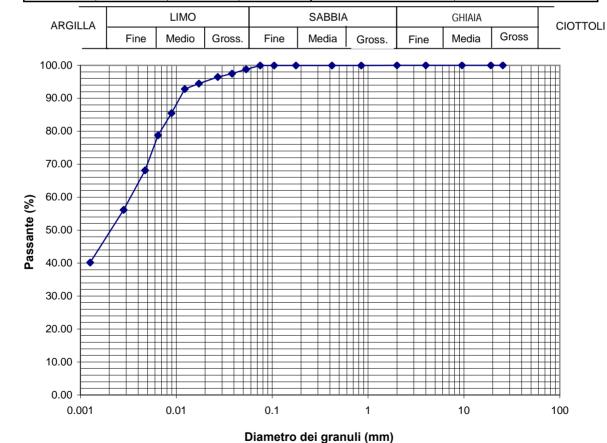
Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

 Cap. soc. €. 10.000 i.v. – Reg. Imp. B0, C.F. e P. IVA: 01909241208 – R.E.A. 398565

 CPR_006 (Rev. 1 del 04/05)

 File: CPR_006_GRA_SED.xls

 Sistema Qualità SINERGEA srl


CERTIFICATO n° CSP_15/0037-04 DATA EMISSIONE 16/03/2015

Pagina 2 di 2

ANALISI GRANULOMETRICA - ASTM D 422

SONDAGGIO : S4 **CAMPIONE**: CI 3 **PROFONDITA**': $11.60 \div 12.20 \text{ m}$

1A	NALISI PER	VAGLIATUR	RA	ANALISI PER SE	DIMENTAZIONE
massa provino - 404.37 g		massa provino 4	7.26 g		
profondità p	rovino 1	2.00 ÷ 1	2.20 m	profondità provino 1	2.00 ÷ 12.20 m
VAGLI	APERTURA	PASSANTE	TRATTENUTO	G_s 2	.737 - determinato
	mm	% in peso	% in peso	Riferimento: CSP_15/	/0037-02
1 1/2 "	38.1			eseguita sul passante a	l vaglio 200
1 "	25.4	100.00	0.00	aerometro ASTM 15	1H
3/4 "	19.05	100.00	0.00	DIAMETRO EQUIVALENTE	% IN PESO PIU' FINE DI D
3/8 "	9.525	100.00	0.00	D (mm)	
5	4	100.00	0.00	0.05362	98.79
10	2	100.00	0.00	0.03811	97.45
20	0.85	99.98	0.02	0.02705	96.45
30	0.59			0.01724	94.45
40	0.42	99.97	0.01	0.01227	92.79
50	0.297			0.00891	85.46
80	0.177	99.95	0.01	0.00645	78.80
100	0.149		I	0.00472	68.13
140	0.105	99.94	0.01	0.00283	56.14
200	0.075	99.93	0.01	0.00127	40.15

DIRETTORE DI LABORATORIO

Sperimentatore

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SII.

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pag. 1 di 5

CERTIFICATO n°: CSP_15/0037-05

COMMESSA: 15/013 **VERBALE DI ACCETTAZIONE n°:** 15/0037_CSP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE : **DATA DI EMISSIONE:** 22/01/2015 16/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE : fustella di acciaio

S4 CI3 11.60 - 12.20 Sondaggio : Campione: Profondità:

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da : Committente

OSSERVAZIONI: -

IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
TCU	Prova triassiale consolidata isotropicamente non drenata	3	ASTM D 4767
CTX	Calcolo tempi di consolidazione su provini per prova triassiale	1	ASTM D 2435

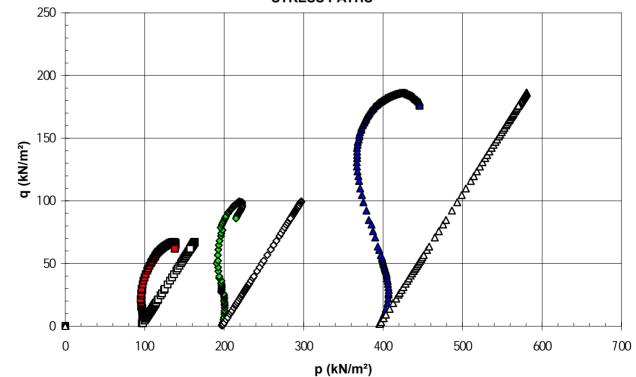
DATA INIZIO PROVA: 10/03/2015

DATA TERMINE PROVA: 14/03/2015

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Enrico BERTOCCHI

Cap. soc. €. 10.000 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

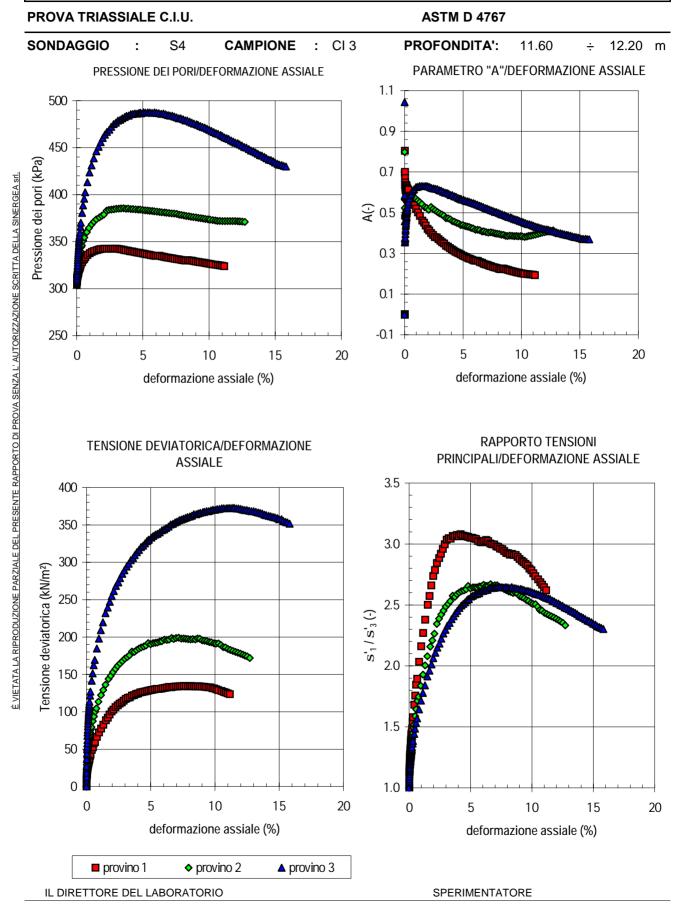

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

CPR_029 (Rev. 1 del 04/05) File: CPR_029_TCU.xls Sistema Qualità SINERGEA srl

CSP_15/0037-05 **CERTIFICATO** n° 16/03/2015 DATA EMISSIONE:

Pag. 2 di 5

PROVA	TRIASSIALE C.I.U.			ASTM D 47	67	
SONDAG	GGIO : S4 CAM	IPIONE	: CI 3	PROFONDITA	.': 11.60	÷ 12.20
PROVINC)	n°	1	2	3	-
Profondità p	rovino	da m	12.10	12.10	12.00	-
Profondità p	rovino	a m	12.20	12.20	12.10	-
Condizione		-	indisturbato	indisturbato	indisturbato	-
	ziale provino	mm	38.10	38.10	38.10	-
Altezza inizi		mm	76.20	76.20	76.20	-
5'3 iniziale		kPa	95.70	197.60	394.40	-
massimo va	lore (σ1 - σ3)	kN/m²	134.47	199.09	372.73	-
	oer filtro e membrana su (σ1 -σ3) max		2	2	3	-
	lore oʻ1/oʻ3	kN/m²	3.08	2.67	2.65	-
Correzione j	oer filtro e membrana su (σ'1/σ'3) max DI ROTTURA	kN/m²	1	2	2	-
	sup. di rottura	°sess.	35	30	25	_
	provino 1 (t. efficaci)	pro	ovino 2 (t. efficaci)	▲ pro	vino 3 (t. efficaci)	
	provino 1 (t. totali)	◆ pro	ovino 2 (t. totali)	△ pro	vino 3 (t. totali)	
250		S	TRESS PATHS			
230	,					
	_ L		1	1		
200					•	
150	- - -					
	- - -					



IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949 CPR_029 (Rev. 1 del 04/05) File: CPR_029_TCU.xls Sistema Qualità SINERGEA srl

CPR_029 (Rev. 1 del 04/05) File: CPR_029_TCU.xls Sistema Qualità SINERGEA srl

CERTIFICATO n° CSP_15/0037-05 DATA EMISSIONE 16/03/2015

Pag. 4 di 5

PROVA TRIASSIALE C.I.U.

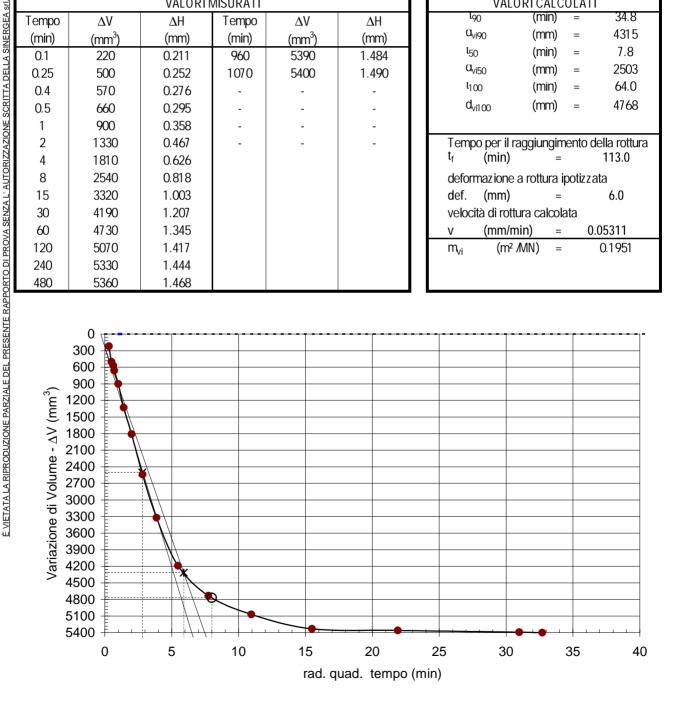
ASTM D 4767

SC.	ONDAGGIO : S4 CAMPIO	NF ·	CI3 P	ROFONDITA':	11.60 ÷	12.20 m
	PROVINO	n°	1 1	2	3	- 12.20 11
	Profondità provino	da m	12.10	12.10	12.00	_
	Profondità provino	a m	12.20	12.20	12.10	_
	Condizione del provino	-	indisturbato	indisturbato	indisturbato	_
	Diametro iniziale provino	mm	38.10	38.10	38.10	-
	Altezza iniziale provino	mm	76.20	76.20	76.20	-
	Massa volumica totale	kN/m³	18.61	18.64	18.87	-
	Riferimento Certificato					
ζ	Contenuto in acqua iniziale	%	30.23	30.85	29.65	-
L NO. A	Riferimento Certificato					
	Massa volumica secca	kN/m³	14.29	14.25	14.56	-
OIZINI	Peso sp. dei grani (determinato)	-	2.737	2.737	2.737	-
=	Riferimento Certificato		CSP_15/0037-02	CSP_15/0037-02	CSP_15/0037-02	
	Indice dei vuoti iniziale	-	0.876	0.882	0.842	-
	Grado si saturazione iniziale	%	94.32	95.64	96.30	-
Ĭ	Pressione pori iniziale	kPa	0.2	-1.2	-1.8	-
ا ا	Valore di B iniziale	-	0.86	0.58	0.42	-
3A I UNAZIONE	Pressione pori a saturazione	kPa	347.2	445	640	-
2	Pressione in cella finale	kPa	400	500	700	-
5	Valore di B a saturazione	-	0.96	0.96	0.97	-
	Durata consolidazione	min	245	1259	1070	-
١,	Pressione in cella	kPa	400	500	700	-
5	Contropressione	kPa	300	300	300	-
77	Pressione pori iniziale	kPa	347.1	445	640	-
וה	Pressione pori finale	kPa	300.1	301	302	-
2	Variazione altezza provino	mm	0.18	1.16	1.70	-
CONSOLIDAZIONE	Variazione volume provino	cm³	2.03	5.13	5.70	-
3	t ₁₀₀	min	-	-	64.0	-
	Tempo di rottura stimato	min	-	-	113.0	-
	Pressione in cella	kPa	400	500	700	-
	Pressione pori iniziale	kPa	304.3	302	306	-
	σ'3 iniziale	kPa	95.7	197.6	394.4	-
	Velocità pressa	mm/min	0.0100	0.0100	0.0100	-
	massimo valore (σ_1 - σ_3)	kN/m²	134	199	373	-
	Deformaz. assiale percentuale a (σ1-σ3)max	%	7.58	7.17	11.49	-
OINE	Tempo per il raggiungimento di (σ1-σ3)max	min	647	537	964	-
5	Correzione per filtro e membrana su (σ1-σ3)max	kN/m²	2	2	3	-
22	Pressione pori a rottura a (σ1-σ3)max	kPa	331	380	459	-
Z L	Valore di A a rottura a (σ1-σ3)max	-	0.23	0.40	0.43	-
	p' a rottura a (o1-o3)max	kN/m²	136	219	427	-
	q a rottura a (σ1-σ3)max	kN/m²	67	100	186	-
	massimo valore σ'_{1}/σ'_{3}	kN/m²	3	3	3	-
	Deformaz. assiale percentuale a (σ '1/ σ '3)max	% kN/m²	4.20	6.63	7.22	-
	Correzione per filtro e membrana su (oʻ1/oʻ3)max	kPa	340	381	2 484	-
	Pressione pori a rottura a (oʻ1/oʻ3)max	Krd	0.31	0.41	0.52	-
	Valore di A a rottura a (oʻ1/oʻ3)max p' a rottura a (oʻ1/oʻ3)max	kN/m²	123	218	394	-
	p a rottura a (σ 17σ 3)max q a rottura a (σ'17σ'3)max	kN/m²	63	99	178	-
	Massa volumica totale finale	kN/m³	19.04	19.39	19.63	
	Contenuto in acqua finale	% %	30.15	28.07	26.08	-
	Riferimento Certificato	/0	30.13	20.07	20.00	_
	Massa volumica secca finale	kN/m³	14.63	15.14	15.57	_
	Indice dei vuoti finale	NN/II	0.832	0.770	0.721	-
ا 2						

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

40057 Granarolo dell' Emilia (BO) - Loc. Quarto Inf. - Via Badini, 6/6 - Tel. +39 051768869 - Fax +39 0516058949 CPR_029 (Rev. 1 del 04/05) File : CPR_029_TCU.xls Sistema Qualità SINERGEA srl


CERTIFICATO n°	CSP_15/0037-05	DATA EMISSIONE	16/03/2015
			Pag. 5 di 5

PROVA TRIASSIALE CIU

CAMPIONE: SONDAGGIO: S4 CI3 PROFONDITA': 11.60 DETERMINAZIONE DEI PARAMETRI DI CONSOLIDAZIONE (ASTM D2435-96) RELATIVI ALL' INCREMENTO DI $s^{\,\prime}_{\,3}$ da 50 kPa 400 kPa а PROVINO n. PROFONDITA' da 12.00 m 12.10 m а Condizioni di drenaggio del provino: 2 estremità e radiale

SL!			VALORIN	MISURATI		
GEA	Tempo	ΔV	ΔH	Tempo	ΔV	ΔH
SINERGEA	(min)	(mm³)	(mm)	(min)	(mm³)	(mm)
	0.1	220	0.211	960	5390	1.484
I A DELLA	0.25	500	0.252	1070	5400	1.490
	0.4	570	0.276	-	-	-
אכא	0.5	660	0.295	-	-	-
	1	900	0.358	-	-	-
AZIONE	2	1330	0.467	-	-	-
3	4	1810	0.626			
AUIOR	8	2540	0.818			
	15	3320	1.003			
ENZ/	30	41 90	1.207			
V A V	60	4730	1.345			
KIO DI PROVA SENZA L	120	5070	1.417			
ח	240	5330	1.444			
2	480	5360	1.468			

VALORI CALCOLATI							
l ₉₀	(min)	=	34.8				
a_{vi90}	(mm)	=	4315				
ι ₅₀	(min)	=	7.8				
a_{vi50}	(mm)	=	2503				
կ ₀₀	(min)	=	64.0				
d _{vi100}	(mm)	=	4768				
Tempo per il	raggiungim	ento (della rottura				
t _f (min)	=		113.0				
deformazione	e a rottura i _l	ootizz	ata				
def. (mm)	=		6.0				
velocità di rot	velocità di rottura calcolata						
v (mm/ı	min) =	C	0.05311				
m _{vi} (m²	? /MN) =		0.1951				

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949 CPR_029 (Rev. 1 del 04/05) File: CPR_029_TCU.xls Sistema Qualità SINERGEA srl

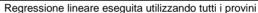
PROVA TRIASSIALE CIU (ASTM D 4767) - INTERPOLAZIONE DATI

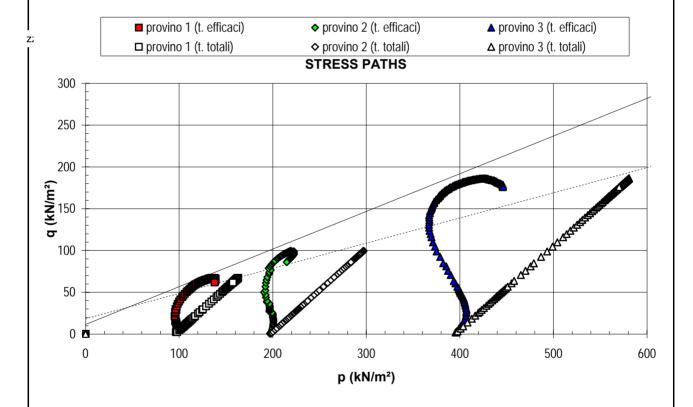
COMMITTENTE: Dott. Geol. Claudia BORELLI

Pag. 1 di 1

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA


DATA EMISSIONE: 16/03/2015


SONDAGGIO: S4

CAMPIONE: CI 3 **PROFONDITA**': da m 11.60 a m 12.20

L'interpretazione sotto riportata è frutto di una regressione lineare operata sulle tensioni massime determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle finalità prefissate spetta al Progettista o Professionista incaricato.

	Tensioni efficaci		Tensioni totali	
Risultati della regressione lineare	Intercetta asse y	inclinaz. retta	Intercetta asse y	inclinaz. retta
Nisultati della regressione illieare	(kN/m ²)	(° sess.)	(kN/m ²)	(° sess.)
	11.57	24.26	18.45	16.76

NOTE:

Regressione lineare eseguita utilizzando il valore massimo della tensione deviatorica

PROVA TRIASSIALE CIU (ASTM D 4767) - INTERPOLAZIONE DATI

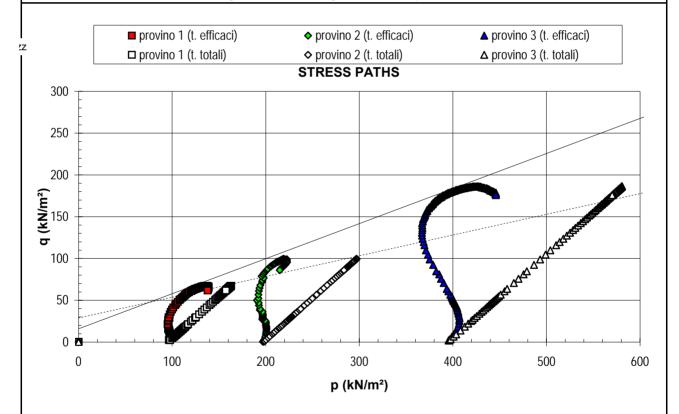
COMMITTENTE: Dott. Geol. Claudia BORELLI

Pag. 1 di 1

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

DATA EMISSIONE: 16/03/2015


SONDAGGIO: S4

CAMPIONE: CI 3 **PROFONDITA**': da m 11.60 a m 12.20

L'interpretazione sotto riportata è frutto di una regressione lineare operata sulle tensioni massime determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle finalità prefissate spetta al Progettista o Professionista incaricato.

	Tensioni efficaci		Tensioni totali	
Risultati della regressione lineare	Intercetta asse y	inclinaz. retta	Intercetta asse y	inclinaz. retta
Nisultati della regressione ilileare	(kN/m ²)	(° sess.)	(kN/m ²)	(° sess.)
	15.88	22.76	28.86	13.93

Regressione lineare eseguita utilizzando i provini 1 e 2

NOTE:

Regressione lineare eseguita utilizzando il valore massimo della tensione deviatorica

RAPPORTO DI PROVA n°: RSP 15/0070-01

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0070_SP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE : 09/03/15 DATA DI EMISSIONE : 16/03/15

DESCRIZIONE CONTENITORE DEL CAMPIONE : fustella acciaio

Sondaggio: S4 Campione: Cl 3 Profondità: 11.60 - 12.20 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: Campione identificato con verbale 15/0037_CSP

IL PRESENTE RAPPORTO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
CFV	Caratteristiche fisico-volumetriche	1	Norme applicabili

SPERIMENTATORE
Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

IZZAZIONE SCRITTA DELLA SINERGEA srl.

RAPPORTO DI PROVA nº

RSP_15/0070-01

DATA EMISSIONE:

16/03/2015

Pag 2 di 2

DETERMINAZIONE DELLE CARATTERISTICHE FISICO - VOLUMETRICHE

SONDAGGIO: S4 CAMPIONE: CI 3 PROFONDITA': 11.60 ÷ 12.20 m

PROFONDITA' PROVINO da m 4.50 a m 4.70

Umidità naturale			
rif.to: Certificato/Rapporto di prova: CSP_15/0037-05	W	(%)	30.24
Massa volumica totale	g	(Mg/m³)	1.907
rif.to: Certificato/Rapporto di prova: CSP_15/0037-05			
Massa volumica secca	gd	(Mg/m³)	1.465
Peso specifico dei grani rif.to: Certificato/Rapporto di prova: CSP_15/0037-02	G _s	_	2.737
Massa volumica della parte solida	gs	(Mg/m³)	2.733
Temperatura dell' acqua	Τ	°C	18
Massa volumica H ₂ 0 alla temperatura T	g_w	Mg/m³	0.99862
Indice dei vuoti	е	-	0.866
Porosità	n	(%)	46.42
Grado di saturazione	S	(%)	95.42
Massa volumica del terreno saturo	$oldsymbol{g}$ sat	(Mg/m³)	1.931

NOTA:

Valori calcolati in base ai valori medi di contenuto in acqua e peso di volume dei tre provini sottoposti a prova triassiale

Sperimentatore

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

RAPPORTO DI PROVA n°: RSP_15/0071-01

COMMESSA: 15/013c VERBALE DI ACCETTAZIONE n°: 15/0071_SP

RICHIEDENTE: Dott. Geol. Claudia BORELLI

CONSEGNATARIO: personale tecnico SOGEO srl

COMMITTENTE: Dott. Geol. Claudia BORELLI

LOCALITA': CARPI (MO)

CANTIERE: FOSSA NUOVA CAVATA

DATA DI ACCETTAZIONE: 09/03/15 **DATA DI EMISSIONE**: 13/03/2015

DESCRIZIONE CONTENITORE DEL CAMPIONE : doppio sacchetto PVC

Sondaggio: S4 Campione: CD 1 Profondità: 5,30 - 5,60 m

DATA PRELIEVO: 20/01/2015

PRELIEVO EFFETTUATO: da SOGEO srl

DATI FORNITI da: Committente

OSSERVAZIONI: Campione identificato con verbale 15/0038_CSP

IL PRESENTE RAPPORTO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

CODICE	DESCRIZIONE PROVA	n° prove	NORMATIVA DI RIFERIMENTO
CFV	Caratteristiche fisico-volumetriche	1	Norme applicabili

SPERIMENTATORE
Dott. Enrico BERTOCCHI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

IZZAZIONE SCRITTA DELLA SINERGEA srl.

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL

RAPPORTO DI PROVA nº

RSP_15/0071-01

DATA EMISSIONE:

13/03/2015

Pag 2 di 2

DETERMINAZIONE DELLE CARATTERISTICHE FISICO - VOLUMETRICHE

SONDAGGIO: S4 **CAMPIONE**: CD 1 **PROFONDITA'**: 5,30 ÷ 5,60 m

PROFONDITA' PROVINO da m 5,46 a m 5,50

w	(%)	30,27
g	(Mg/m³)	1,942
gd	(Mg/m³)	1,491
G _s	_	2,740
gs	(Mg/m³)	2,736
Т	°C	18
g _w	Mg/m³	0,99862
е	-	0,835
n	(%)	45,51
S	(%)	99,18
g sat	(Mg/m³)	1,948
	g g d G s g s T g w e n S	g (Mg/m³) g d (Mg/m³) G s - g s (Mg/m³) T °C g w Mg/m³ e - n (%) S (%)

NOTA:

Sperimentatore

Studio Geologico e Ambientale Dott.ssa Claudia Borelli Strada Cavedole12/C 41126 Portile (MO) Tel e fax +39 059 784335 Cell. +39 339 8179913 email c.borelli@studio-borelli.191.it
ALLEGATO 8 INDAGINE SISMICA CON METODO MASW – RELAZIONE TECNICA

REGIONE EMILIA ROMAGNA PROVINCIA DI MODENA E REGGIO EMILIA

INDAGINE GEOFISICA CON METODO SISMICO MASW RELAZIONE TECNICA

A cura di: Dott. Geol. G. Vaccari

INDICE

INTRODUZIONE	3
1.1 METODO DI INDAGINE	3
1.2 STRUMENTAZIONE	4
1.3 ELABORAZIONE	5
1.4 RISULTATI - DETERMINAZIONE DELLE CATEGORIA DEL SUOLO DI FONDAZIONE	7

INTRODUZIONE

Su incarico della Dott.sa Geol. Claudia Borelli, è stata eseguita, in corrispondenza di argini di canali gestiti dal Consorzio di Bonifica Emilia Centrale, una campagna sismica con metodo MASW di tipo attivo. L'indagine è consistita nell'esecuzione di n. 4 MASW ed è stata svolta con l'obiettivo di determinare la velocità ponderata delle onde sismiche di taglio nei primi 30 metri a partire da piano campagna (Vs₃₀), in riferimento alla nuova classificazione sismica del territorio (N.T.C. 23/09/05), al D.M. 14/01/08 ("Nuove norme tecniche per la costruzione") ed alla delibera G.R.E.R. (n. 1677 del 24/10/05).

Di seguito si riportano la metodologia della ricerca e i risultati dell'indagine eseguita.

1.1 METODO DI INDAGINE

La MASW (Multichannel Analysis of Seismic Waves) è una metodologia di indagine geofisica che consente l'individuazione di frequenza, ampiezza, lunghezza d'onda e velocità di propagazione delle onde sismiche superficiali (principalmente onde di Rayleigh) generate artificialmente. L'analisi delle onde superficiali permette la determinazione delle velocità delle onde di taglio verticali (Vs) nei terreni al di sotto dello stendimento sismico. L'indagine è realizzata disponendo lungo un linea retta, a intervalli regolari, una serie di geofoni collegati ad un sismografo. Una fonte puntuale di energia, quale mazza battente su piastra metallica o cannoncino sismico, produce treni d'onda che attraversano il terreno con percorsi, velocità e frequenze variabili. Il passaggio del treno d'onda sollecita la massa inerziale presente nel geofono, l'impulso così prodotto viene convertito in segnale elettrico e acquisito dal sismografo. Il risultato è un sismogramma che contiene molteplici informazioni quali tempo di arrivo ai geofoni rispetto all'instante di energizzazione, frequenze e relative ampiezze dei treni d'onda.

La successiva elaborazione consente di ottenere un diagramma 1D (profondità/velocità onde di taglio) tramite modellizzazione ed elaborazione matematica con algoritmi capaci di minimizzare le differenze tra i modelli elaborati e i dati di partenza. Il diagramma, riferibile al centro della linea sismica, rappresenta un valor medio della sezione di terreno interessata all'indagine di lunghezza circa corrispondente a quella della linea sismica e profondità variabile principalmente in funzione della caratteristiche dei materiali attraversati e della geometria dello stendimento.

Il metodo MASW sfrutta le caratteristiche di propagazione delle onde di Rayleigh per ricavare le equivalenti velocità delle onde di taglio (Vs), essendo le onde di Rayleigh prodotte dall'interazione delle onde di taglio verticali e delle onde di volume (Vp).

Le onde di Rayleigh si propagano secondo fronti d'onda cilindrici, producendo un movimento ellittico delle particelle durante il transito. Con i metodi di energizzazione usuali i due terzi dell'energia prodotta viene trasportata dalle onde di Rayleigh a fronte di meno di un terzo suddiviso tra le rimanenti tipologie di onde. Inoltre le onde di Rayleigh sono meno sensibili delle onde P e S alla dispersione in funzione della distanza e con un'attenuazione geometrica inferiore.

Onde di Rayleigh ad alte frequenze e piccole lunghezze d'onda trasportano informazioni relative agli strati più superficiali mentre quelle a basse frequenze e lunghezze d'onda maggiori interessano anche gli strati più profondi. In pratica il metodo MASW di tipo attivo opera in intervalli di frequenze comprese tra 5 e 70 Hz circa, permettendo di indagare una profondità massima variabile, in funzione delle caratteristiche dei terreni interessati, tra 30 e 50 metri.

La geometria della linea sismica ha influenza sui dati e quindi sul risultato finale, infatti la massima lunghezza d'onda acquisibile è circa corrispondente alla lunghezza dello stendimento; mentre la distanza tra i geofoni, solitamente compresa tra 1 e 3 metri, definisce la minima lunghezza d'onda individuabile evitando fenomeni di aliasing.

Nella campagna di indagine del lavoro in oggetto sono stati eseguiti n. 4 stendimenti di 24 geofoni, utilizzando tutto lo spazio a disposizione, con spaziatura tra i geofoni di 2,0 metri per una lunghezza della linea sismica di 46 metri. L'energizzazione è stata eseguita a 2,0 m, 5,0 m e 10,0 metri dal primo geofono.

1.2 STRUMENTAZIONE

Per l'acquisizione dei dati è stato utilizzato un sismografo multicanale "PASI 16S24-U", dotato di 24 geofoni verticali con frequenza propria di 4,5 Hz, collegati allo strumento tramite cavi elettrici schermati.

Lo strumento è in grado di gestire l'acquisizione simultanea su 24 canali e di rilevare l'instante di energizzazione (tempo zero) tramite geofono starter. È inoltre equipaggiato di

DOTT. GEOL. GIANLUCA VACCARI

software proprietario in grado di gestire tutte le operazioni di campagna attraverso le seguenti fasi:

- impostazione numero di canali e metodologia di indagine;
- impostazione frequenza e lunghezza di campionamento;
- selezione entità dell'amplificazione del segnale per ogni canale;
- impostazione filtraggi delle frequenze indesiderate;
- visualizzazione sismogramma con misura dei tempi di arrivo;
- esecuzione operazioni di somma e sottrazione di ulteriori sismogrammi;
- memorizzazione di tutti i dati relativi all'acquisizione.

Per l'energizzazione è stata utilizzata una mazza del peso di 8 kg e una piastra di battuta di alluminio.

1.3 ELABORAZIONE

L'elaborazione è stata effettuata con un software dedicato (*Winmasw 4.8 – Eliosoft*) in grado di gestire le fasi di preparazione, analisi, modellizzazione e restituzione finale.

La fase iniziale consiste nel filtraggio del segnale sismico per eliminare il "rumore" ed eventuali frequenze indesiderate. Il software permette di visualizzare il sismogramma nei dominio spazio-tempo e visualizzando i grafici frequenza-ampiezza anche per le singole tracce. Sono disponibili varie modalità di gestione del segnale, le cui principali sono i filtraggi "passa basso", "passa alto", "passa banda", "taglia banda", il "muting" e l'ACG. Inoltre tramite le curve di attenuazione delle onde superficiale è possibile valutare con maggior precisione la qualità dei dati acquisiti.

La fase successiva consiste nel calcolo della curva di dispersione, visualizzata tramite diagramma frequenza-numero d'onda con appropriata scala cromatica dell'ampiezza.

Utilizzando la curva di dispersione si procede ad individuare la curva della velocità di fase apparente del modo fondamentale e, ove possibile, dei modi superiori.

La fase di inversione prevede una modellizzazione monodimensionale che consente di determinare un profilo di velocità delle onde di taglio Vs in funzione della profondità. L'elaborazione avviene tramite l'applicazione di procedimenti calcolo e algoritmi genetici di inversione (global-search methods), che gestiscono all'intero di un "spazio di ricerca", modelli caratterizzati da parametri velocità di taglio (Vs) e spessori degli strati. Altri parametri previsti dal modello sono il coefficiente di Poisson e la velocità delle onde di

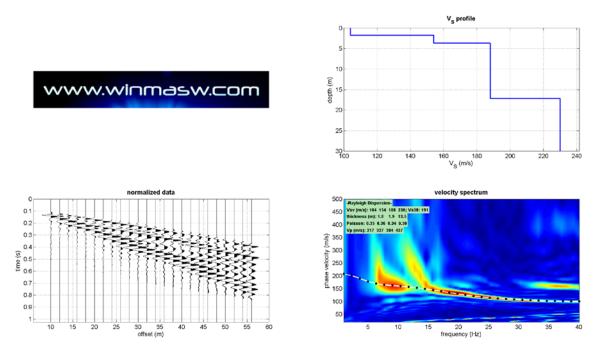
volume (Vp) che, assieme a spessore degli sismostrati e relative Vs, possono venire modificati anche manualmente. Tramite interazioni successive si ottiene un modello di inversione in grado di far coincidere con la migliore approssimazione possibile la curva di dispersione elaborata nella fase precedente e quella modellizzata. Viene inoltre restituita una stima dell'attendibilità (deviazione standard) del modello proposto ottenuta con tecniche statistiche.

Avendo a disposizione informazioni addizionali, quali ad esempio prove penetrometriche statiche CPT, è stato possibile impostare un modello geologico\geofisico con il quale definire parametri quali lo spessore degli strati e coefficiente di Poisson. Tale modello consente una più accurata inversione dei dati di campagna e di conseguenza una migliore definizione della sismostratigrafia del sito.

In conclusione viene restituito un diagramma (1D) delle velocità delle onde di taglio (Vs) in funzione della profondità, con relativa tabella, calcolo delle V_{s30} e correlazione al tipo di terreno, come da normativa.

Va ricordato che il diagramma 1D mostra una suddivisione sismostratigrafica ricostruita sul differente comportamento sismico dei materiali investigati. È quindi possibile che variazioni di velocità non corrispondano necessariamente a passaggi litologici netti.

DOTT. GEOL. GIANLUCA VACCARI


1.4 RISULTATI - DETERMINAZIONE DELLE CATEGORIA DEL SUOLO DI FONDAZIONE

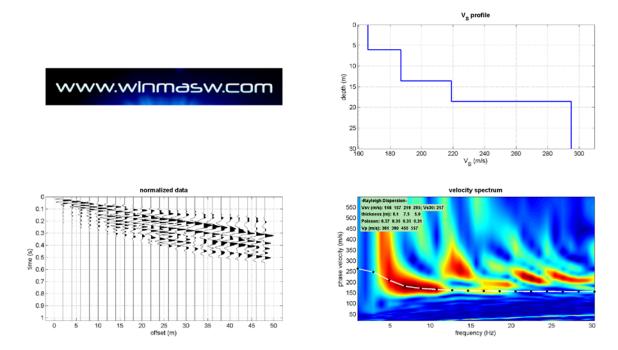
INDAGINE SISMICA - Cavata Orientale -

L'analisi delle onde di taglio (Vs) tramite metodo MASW, ha consentito di determinare gli spessori dei sismostrati e le relative velocità di taglio, come riportato in tabella e relativo diagramma, permettendo di calcolare il valore $V_{\rm S30}$ per la sezione indagata.

Il valore di Vs₃₀ è riferito ai primi 30 m a partire dal piano campagna risulta pari a **191** m/sec.

Profondità da p.c. (m)	Spessore (m)	Velocità onde S (m/sec)
1.8	1.8	104
3.7	1.9	154
17.2	13.5	188
30.0	12.8	230

- Sismogramma, Curva di dispersione e Diagramma velocità/profondità-


- Ubicazione stendimento Cavata Orientale-

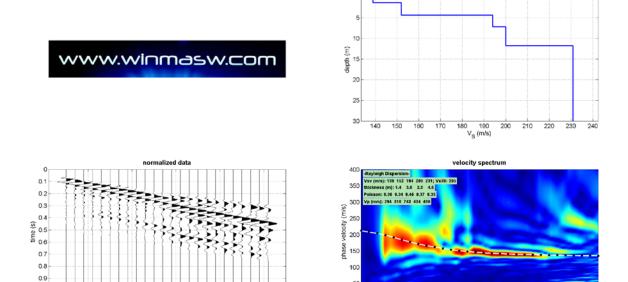
INDAGINE SISMICA - Fossa Nuova Cavata -

L'analisi delle onde di taglio (Vs) tramite metodo MASW, ha consentito di determinare gli spessori dei sismostrati e le relative velocità di taglio, come riportato in tabella e relativo diagramma, permettendo di calcolare il valore $V_{\rm S30}$ per la sezione indagata.

Il valore di Vs₃₀ è riferito ai primi 30 m a partire dal piano campagna risulta pari a **217** m/sec.

Profondità da p.c. (m)	Spessore (m)	Velocità onde S (m/sec)
6.1	6.1	166
13.6	7.5	187
18.6	5.0	219
30.0	11.4	295

- Sismogramma, Curva di dispersione e Diagramma velocità/profondità-


- Ubicazione stendimento Fossa Nuova Cavata -

INDAGINE SISMICA - CABM -

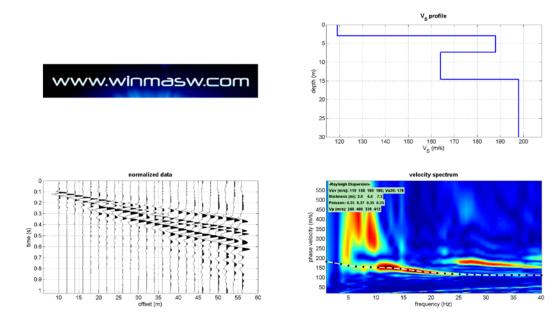
L'analisi delle onde di taglio (Vs) tramite metodo MASW, ha consentito di determinare gli spessori dei sismostrati e le relative velocità di taglio, come riportato in tabella e relativo diagramma, permettendo di calcolare il valore $V_{\rm S30}$ per la sezione indagata.

Il valore di Vs₃₀ è riferito ai primi 30 m a partire dal piano campagna risulta pari a **205** m/sec.

Profondità da p.c. (m)	Spessore (m)	Velocità onde S (m/sec)
1.4	1.4	139
4.4	3.0	152
7.2	2.8	194
11.8	4.6	200
30.0	22.2	231

- Sismogramma, Curva di dispersione e Diagramma velocità/profondità-

20 frequency (Hz)


- Ubicazione stendimento CABM -

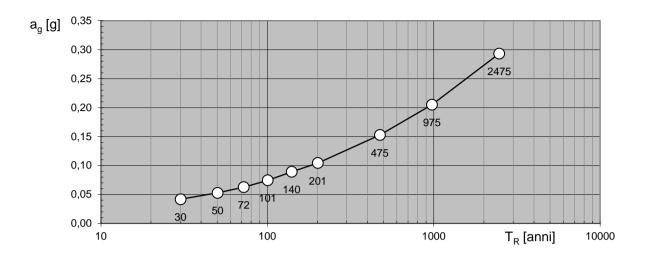
INDAGINE SISMICA - CAVO ALFIERE-

L'analisi delle onde di taglio (Vs) tramite metodo MASW, ha consentito di determinare gli spessori dei sismostrati e le relative velocità di taglio, come riportato in tabella e relativo diagramma, permettendo di calcolare il valore $V_{\rm S30}$ per la sezione indagata.

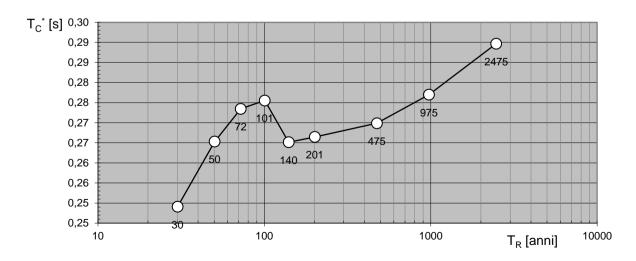
Il valore di Vs₃₀ è riferito ai primi 30 m a partire dal piano campagna risulta pari a **176** m/sec.

Profondità da p.c. (m)	Spessore (m)	Velocità onde S (m/sec)
3.0	3.0	119
7.4	4.4	188
14.6	7.2	164
30.0	15.4	198

- Sismogramma, Curva di dispersione e Diagramma velocità/profondità-

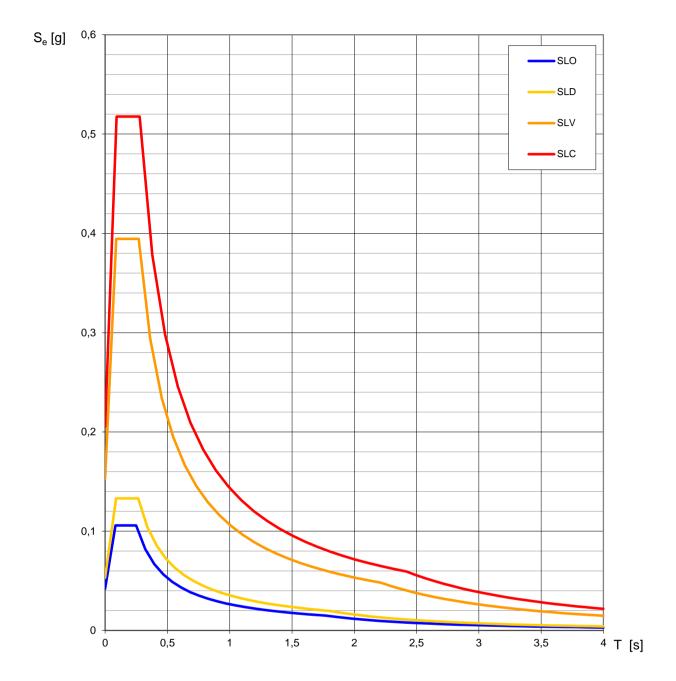


- Ubicazione stendimento Cavo Alfiere -


Studio Geologico e Ambientale Dott.ssa Claudia Borelli Strada Cavedole12/C 41126 Portile (MO) Tel e fax +39 059 784335 Cell. +39 339 8179913 email c.borelli@studio-borelli.191.it

ALLEGATO 9 VALUTAZIONE DELLA RISPOSTA SISMICA LOCALE DIVERSIVO FOSSA NUOVA CAVATA

Valori dei parametri a_g, F_o, T_C^{*}: variabilità col periodo di ritorno T_R



Valori dei parametri a_g, F_o, T_C* per i periodi di ritorno T_R di riferimento

T_R	a_g	F _o	T_C^*
[anni]	[g]	[-]	[s]
30	0,042	2,526	0,249
50	0,053	2,513	0,265
72	0,063	2,487	0,273
101	0,074	2,465	0,276
140	0,089	2,517	0,265
201	0,104	2,593	0,266
475	0,153	2,583	0,270
975	0,205	2,527	0,277
2475	0,293	2,437	0,290

Spettri di risposta elastici per i diversi Stati Limite

Valori dei parametri a_g, F_o, T_C per i periodi di ritorno T_R associati a ciascuno SL

SLATO	T_R	a_{g}	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	30	0,042	2,526	0,249
SLD	50	0,053	2,513	0,265
SLV	475	0,153	2,583	0,270
SLC	975	0,205	2,527	0,277

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLC

Parametri indipendenti

STATO LIMITE	SLC
a_q	0,205 g
F_o	2,527
T _C *	0,277 s
S _S	1,389
C _C	1,604
S _T	1,000
q	2,400

Parametri dipendenti

S	1,389
η	0,417
T _B	0,148 s
T _C	0,444 s
T _D	2,419 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$$
 (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{B}=T_{C}\left/ 3\right. \tag{NTC-07 Eq. 3.2.8}$$

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,285
T _B ◀	0,148	0,300
T _C ◀	0,444	0,300
	0,538	0,247
	0,632	0,211
	0,726	0,183
	0,820	0,162
	0,915	0,146
	1,009	0,132
	1,103	0,121
	1,197	0,111
	1,291	0,103
	1,385	0,096
	1,479	0,090
	1,573	0,085
	1,667	0,080
	1,761	0,076
	1,855	0,072
	1,949	0,068
	2,043	0,065
	2,137	0,062
	2,231	0,060
⊤ ₄	2,325	0,057
T _D ◀	2,419	0,055
	2,495	0,052
	2,570	0,049
	2,645	0,046
	2,721	0,044
	2,796	0,041
	2,871 2,946	0,041 0,041
	3,022	0,041
	3,022	0,041
	3,172	0,041
	3,247	0,041
	3,323	0,041
	3,398	0,041
	3,473	0,041
	3,548	0,041
	3,624	0,041
	3,699	0,041
	3,774	0,041
	3,849	0,041
	3,925	0,041
	4,000	0,041
l	· ·	·

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLC

Parametri indipendenti

STATO LIMITE	SLC
a_q	0,205 g
F_o	2,527
T _C *	0,277 s
S _S	1,389
C _C	1,604
S _T	1,000
q	1,000

Parametri dipendenti

S	1,389
η	1,000
T _B	0,148 s
T _C	0,444 s
T _D	2,419 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$$
 (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{B}=T_{C}\left/ 3\right. \tag{NTC-07 Eq. 3.2.8}$$

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,285
T _B ◀	0,148	0,719
T _C ◀	0,444	0,719
	0,538	0,594
	0,632	0,505
	0,726	0,440
	0,820	0,389
	0,915	0,349
	1,009	0,317
	1,103	0,290
	1,197	0,267
	1,291	0,248
	1,385	0,231
	1,479	0,216
	1,573	0,203
	1,667	0,192
	1,761	0,181
	1,855	0,172
	1,949	0,164
	2,043	0,156
	2,137	0,149
	2,231	0,143
- .	2,325	0,137
T _D ◀	2,419	0,132
	2,495	0,124
	2,570	0,117
	2,645	0,110
	2,721	0,104
	2,796	0,099
	2,871	0,094
	2,946	0,089
	3,022	0,085
	3,097	0,081
	3,172	0,077
	3,247	0,073
	3,323	0,070
	3,398	0,067
	3,473	0,064
	3,548	0,061
	3,624	0,059
	3,699	0,056
	3,774	0,054
	3,849	0,052
	3,925	0,050
	4,000	0,048

SLC

Parametri e punti dello spettro di risposta verticale per lo stato limite:

Parametri indipendenti

STATO LIMITE	SLC
a _{gv}	0,125 g
a _{gv} S _S	1,000
S _T	1,000
q	1,500
T _B	0,050 s
T _C	0,150 s
T _D	1,000 s

Parametri dipendenti

F_v	1,544
S	1,000
η	0,667

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$F_{v} = 1,35 \cdot F_{o} \cdot \left(\frac{a_{g}}{g}\right)^{0,5}$$
 (NTC-08 Eq. 3.2.11)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,125
T _B ←	0,050	0,211
T _C ◀	0,150	0,211
	0,235	0,135
	0,320	0,099
	0,405	0,078
	0,490	0,065
	0,575	0,055
	0,660	0,048
	0,745	0,042
	0,830	0,038
	0,915	0,035
$T_D \leftarrow$	1,000	0,032
	1,094	0,026
	1,188	0,022
	1,281	0,019
	1,375	0,017
	1,469	0,015
	1,563	0,013
	1,656	0,012
	1,750	0,010
	1,844	0,009
	1,938	0,008
	2,031	0,008
	2,125	0,007
	2,219	0,006
	2,313	0,006
	2,406	0,005
	2,500	0,005
	2,594	0,005
	2,688	0,004
	2,781 2,875	0,004 0,004
	2,969 3,063	0,004
	3,063 3,156	0,003 0,003
	3,150	0,003
	3,344	0,003
	3,438	0,003
	3,531	0,003
	3,625	0,002
	3,719	0,002
	3,813	0,002
	3,906	0,002
	4,000	0,002

SLC

Parametri e punti dello spettro di risposta verticale per lo stato limite:

Parametri indipendenti

STATO LIMITE	SLC
a _{gv}	0,125 g
a _{gv} S _S	1,000
S _T	1,000
q	1,500
T _B	0,050 s
T _C	0,150 s
T _D	1,000 s

Parametri dipendenti

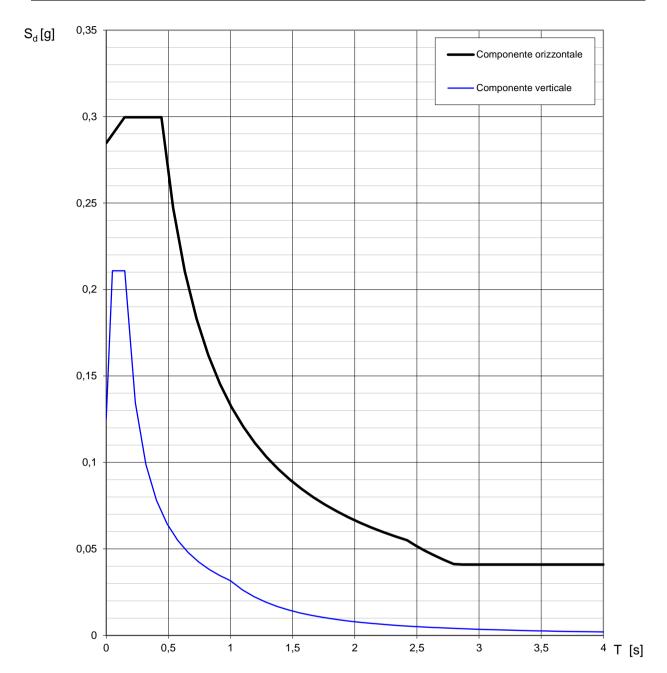
F_v	1,544
S	1,000
η	0,667

Espressioni dei parametri dipendenti

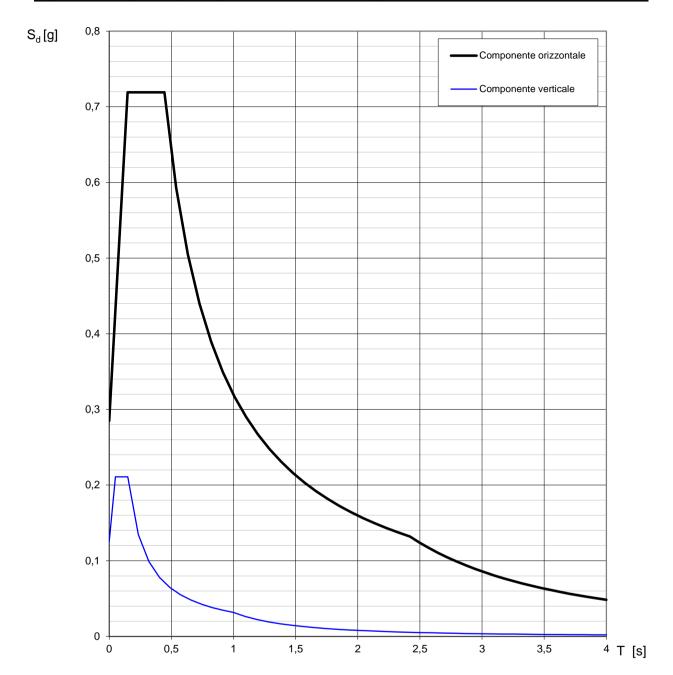
$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$F_{v} = 1,35 \cdot F_{o} \cdot \left(\frac{a_{g}}{g}\right)^{0,5}$$
 (NTC-08 Eq. 3.2.11)


Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$


Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,125
T _B ←	0,050	0,211
T _C ◀	0,150	0,211
	0,235	0,135
	0,320	0,099
	0,405	0,078
	0,490	0,065
	0,575	0,055
	0,660	0,048
	0,745	0,042
	0,830	0,038
	0,915	0,035
$T_D \leftarrow$	1,000	0,032
	1,094	0,026
	1,188	0,022
	1,281	0,019
	1,375	0,017
	1,469	0,015
	1,563	0,013
	1,656	0,012
	1,750	0,010
	1,844	0,009
	1,938	0,008
	2,031	0,008
	2,125	0,007
	2,219	0,006
	2,313	0,006
	2,406	0,005
	2,500	0,005
	2,594	0,005
	2,688	0,004
	2,781 2,875	0,004 0,004
	2,969 3,063	0,004
	3,063 3,156	0,003 0,003
	3,150	0,003
	3,344	0,003
	3,438	0,003
	3,531	0,003
	3,625	0,002
	3,719	0,002
	3,813	0,002
	3,906	0,002
	4,000	0,002

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLC

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLC

